S17-1. $\quad(0.100 \mathrm{~mol})\left(96485 \frac{\mathrm{C}}{\mathrm{mol}}\right)=I \cdot(3600 \mathrm{~s}) \Rightarrow I=2.680 \frac{\mathrm{C}}{\mathrm{s}}=2.680 \mathrm{~A}$
S17-2. (a) E (cathode) $=-0.828-0.05916 \log (0.033)^{1 / 2}(1.0)=-0.784_{2} \mathrm{~V}$ $E($ anode $)=1.078-0.05916 \log (0.010)=1.196_{3} \mathrm{~V}$
(Note that E (anode) is calculated for a reduction half-reaction.)
$E=E($ cathode $)-E($ anode $)=-1.981 \mathrm{~V}$
(b) Ohmic potential $=I \cdot R=(0.052 \mathrm{~A})(4.3 \Omega)=0.224 \mathrm{~V}$

$$
E=E(\text { cathode })-E(\text { anode })-I R=-2.20_{5}
$$

(c) $E=E$ (cathode) $-E$ (anode) $-I R-$ overpotentials

$$
=-1.981-0.224-0.30-0.08=-2.58_{5} \mathrm{~V}
$$

(d) concentration polarization changes the electrode potentials:
$E($ cathode $)=-0.828-0.05916 \log (0.033)^{1 / 2}(2.0)=-0.802_{0}$
$E($ anode $)=1.078-0.05916 \log (0.0020)=1.237_{7}$
$E=\mathrm{E}($ cathode $)-E($ anode $)-I R-$ overpotentials
$-0.802{ }_{0}-1.237_{7}-0.22-0.30-0.08=-2.64 \mathrm{~V}$

S17-3. (a) Let us assume that the left electrode is the anode:
cathode: $\quad \frac{1}{2} \mathrm{Cl}_{2}(g)+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cl}^{-} \quad E^{\circ}=1.360 \mathrm{~V}$
anode: $\frac{1}{2} \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)+\mathrm{e}^{-} \rightleftharpoons \mathrm{Hg}(l)+\mathrm{Cl}^{-} \quad E^{\circ}=0.268 \mathrm{~V}$
$E($ cathode $)=1.360-0.05916 \log \frac{\left[\mathrm{Cl}^{-}\right]}{\sqrt{P_{\mathrm{Cl}_{2}}}}=1.360-0.05916 \log \frac{0.080}{\sqrt{0.10}}=1.395 \mathrm{~V}$
$E($ anode $)=0.241 \mathrm{~V}$ (saturated calomel electrode.)
$E=E($ cathode $)-E($ anode $)=1.395-0.241=1.154 \mathrm{~V}$
Since E is positive, we guessed the direction of the reaction correctly.
The net reaction is $\frac{1}{2} \mathrm{Cl}_{2}(g)+\mathrm{Hg}(l)+\mathrm{Cl}^{-}=\mathrm{Cl}^{-}+\frac{1}{2} \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)$
(b) $E_{\text {galvanic }}=E($ cathode $)-E($ anode $)-I \cdot R=1.154-(0.025 \mathrm{~A})(2.12 \Omega)=1.101 \mathrm{~V}$
(c) $E_{\text {electrolysis }}=-[E($ cathode $)-E($ anode $)]-I \cdot R=-1.154-(0.025 \mathrm{~A})(2.12 \Omega)=-1.207 \mathrm{~V}$
(We wrote $-[E$ (cathode) $-E$ (anode) $]$ because the cell is being run in reverse and the anode and cathode reactions are reversed from those of the galvanic cell.)
(d) E (cathode) $=1.360-0.05916 \log \frac{0.040}{\sqrt{0.20}}=1.422 \mathrm{~V}$

$$
\begin{aligned}
& E=E(\text { cathode })-E(\text { anode })=1.422-0.241=1.181 \mathrm{~V} \\
& E_{\text {electrolysis }}=-[E(\text { cathode })-E(\text { anode })]-I \cdot R=-1.181-(0.025 \mathrm{~A})(2.12 \Omega)=-1.234 \mathrm{~V}
\end{aligned}
$$

(e) $E_{\text {electrolysis }}=-1.234-0.15=-1.38 \mathrm{~V}$

S17-4. Pb (tartrate) $+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{PbO}_{2}(s)+$ tartrate $^{2-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-}$Oxidation occurs at the anode.

$$
\mathrm{Pb}^{2+} \quad \mathrm{Pb}^{4+}
$$

The mass of Pb (tartrate) (FM 355.3) giving 0.1221 g of $\mathrm{PbO}_{2}(\mathrm{FM}=239.2)$ is

$$
(355.3 / 239.2)(0.1221 \mathrm{~g})=0.1814 \mathrm{~g} . \quad \% \mathrm{~Pb}=\frac{0.1814}{0.5314} \times 100=34.13 \%
$$

S17-5. (a) $\mathrm{Fe}^{2+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(s) \quad E^{\circ}=-0.44 \mathrm{~V}$
$\mathrm{E}($ cathode $)=-0.44-0.05916 \log \frac{1}{1.0 \times 10^{-7}}=-0.85_{4} \mathrm{~V}$
(b) $E($ cathode, vs $\mathrm{Ag} \mid \mathrm{AgCl})=-0.85_{4}-0.197=-1.05 \mathrm{~V}$
(c) Concentration polarization means that Fe^{2+} cannot diffuse to the cathode as fast as it is consumed. The concentration of Fe^{2+} at the electrode surface would be $<0.10 \mu \mathrm{M}$, so the potential would be more negative.

S17-6. When 99% of $\mathrm{Hg}(\mathrm{II})$ is reduced, the formal concentration will be $1.0 \times 10^{-5} \mathrm{M}$, and the predominant form is $\mathrm{Hg}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$.
$\beta_{4}=\frac{\left[\mathrm{Hg}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\right]}{\left[\mathrm{Hg}^{2+}\right]\left[\mathrm{NH}_{3}\right]^{4}}=\frac{\left(1.0 \times 10^{-5}\right)}{\left[\mathrm{Hg}^{2+}\right](1.0)^{4}} \Rightarrow\left[\mathrm{Hg}^{2+}\right]=5 \times 10^{-25} \mathrm{M}$
$\mathrm{Hg}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Hg}(l) \quad E^{\circ}=0.852$
$E($ cathode $)=0.852-\frac{0.05916}{2} \log \frac{1}{5 \times 10^{-25}}=0.133 \mathrm{~V}$
S17-7. Relevant information :

$$
\begin{array}{ll}
\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}(s) & E^{\circ}=-0.44 \mathrm{~V} \\
\mathrm{Co}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Co}(s) & E^{\circ}=-0.282 \mathrm{~V} \\
\mathrm{CoY}^{2-} K_{\mathrm{f}}=2.0 \times 10^{16} & \mathrm{FeY}^{2-} K_{\mathrm{f}}=2.1 \times 10^{14} \quad \alpha_{\mathrm{Y}} 4-=3.8 \times 10^{-9} \text { at } \mathrm{pH} 4.0
\end{array}
$$

When 99% of FeY^{2-} is removed, $\left[\mathrm{FeY}^{2-}\right]=1.0 \times 10^{-8} \mathrm{M}$.

$$
\left[\mathrm{Fe}^{2+}\right]=\frac{\left[\mathrm{FeY}^{2-}\right]}{K_{\mathrm{f}} \alpha_{\mathrm{Y}^{-}-}[\mathrm{EDTA}]}=\frac{1.0 \times 10^{-8}}{\left(2.1 \times 10^{14}\right)\left(3.8 \times 10^{-9}\right)(0.010)}=1.3 \times 10^{-12}
$$

The cathode potential required to reduce FeY^{2-} to this level is

$$
E(\text { cathode })=-0.44-\frac{0.05916}{2} \log \frac{1}{1.3 \times 10^{-12}}=-0.79 \mathrm{~V}
$$

Will this cathode potential reduce Co^{2+} ?
$\alpha_{\mathrm{Y}^{4-}} K_{\mathrm{f}}\left(\right.$ for $\left.\mathrm{CoY}^{2-}\right)=\frac{\left[\mathrm{CoY}^{2-}\right]}{\left[\mathrm{Co}^{2+}\right][\text { EDTA }]} \Rightarrow\left[\mathrm{Co}^{2+}\right]=1.3 \times 10^{-8} \mathrm{M}$
$E\left(\right.$ cathode, $\left.\mathrm{Co}^{2+}\right)=-0.282-\frac{0.05916}{2} \log \frac{1}{1.3 \times 10^{-8}}=-0.515 \mathrm{~V}$
Since E (cathode) $<-0.515 \mathrm{~V}, \mathrm{CoY}^{2-}$ will be reduced. The separation is not feasible.
S17-8. (a) $\mathrm{mol} \mathrm{e}^{-}=\frac{I \cdot t}{F}=\frac{\left(4.11 \times 10^{-3} \mathrm{C} / \mathrm{s}\right)(834 \mathrm{~s})}{96485 \mathrm{C} / \mathrm{mol}}=3.55 \times 10^{-5} \mathrm{~mol}$
(b) One mol e- reacts with $\frac{1}{2}$ mol Br_{2}, which reacts with $\frac{1}{2}$ mol cyclohexene $\Rightarrow 1.78 \times 10^{-5} \mathrm{~mol}$ cyclohexene.
(c) $1.78 \times 10^{-5} \mathrm{~mol} / 3.00 \times 10^{-3} \mathrm{~L}=5.92 \times 10^{-3} \mathrm{M}$

S17-9. Step 1: Total $\mathrm{Ti}=\frac{2.03 \mathrm{mg} \mathrm{Ti} / 47.88 \mathrm{mg} / \mathrm{mmol}}{42.37 \mathrm{mg} \text { unknown }}=1.00_{0} \frac{\mu \mathrm{~mol} \mathrm{Ti}}{\mathrm{mg} \text { unknown }}$
Step 2: Reducing equivalents of $\mathrm{Ti}=\frac{9.27 \mathrm{C} / 96485 \mathrm{C} / \mathrm{mol}}{51.36 \mathrm{mg} \text { unknown }}=\frac{1.87 \mu \mathrm{~mol}}{\mathrm{mg} \text { unknown }}$
Reducing equivalents per mol of $\mathrm{Ti}=\frac{1.87 \mu \mathrm{~mol} / \mathrm{mg} \text { unknown }}{1.00 \mu \mathrm{~mol} \mathrm{Ti} / \mathrm{mg} \text { unknown }}=1.87$ equivalents $/ \mathrm{mol} \mathrm{Ti}$
This represents the degree of reduction below Ti^{4+}.
The average oxidation state is $\mathrm{Ti}^{+2.13}\left(=0.87 \mathrm{TiCl}_{2}+0.13 \mathrm{TiCl}_{3}\right)$
S17-10. If the reagent contains only CoCl_{2} and $\mathrm{H}_{2} \mathrm{O}$, we can write
grams of $\mathrm{CoCl}_{2}=\left(\frac{\text { grams of Co deposited }}{\text { atomic mass of } \mathrm{Co}}\right)\left(\mathrm{FM}\right.$ of $\left.\mathrm{CoCl}_{2}\right)=0.21893 \mathrm{~g}$
grams of $\mathrm{H}_{2} \mathrm{O}=0.40249-0.21893=0.18356 \mathrm{~g}$
$\frac{\text { moles of } \mathrm{H}_{2} \mathrm{O}}{\text { moles of } \mathrm{Co}}=\frac{0.18356 / \mathrm{FM} \text { of } \mathrm{H}_{2} \mathrm{O}}{0.09937 / \text { atomic mass of } \mathrm{Co}}=6.043$

The reagent composition is close to $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
$\mathbf{S 1 7 - 1 1}$. The anode reaction is $\mathrm{Zn}(s) \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
$5.0 \mathrm{~g} \mathrm{Zn}=7.65 \times 10^{-2} \mathrm{~mol} \mathrm{Zn}=1.52 \times 10^{-1} \mathrm{~mol} \mathrm{e}^{-}$
$(0.152 \mathrm{~mol} \mathrm{e}-)(96485 \mathrm{C} / \mathrm{mol})=1.48 \times 10^{4} \mathrm{C}$
The current following through the circuit is $I=E / R=$
$1.02 \mathrm{~V} / 2.8 \mathrm{~W}=0.364 \mathrm{~A}=0.364 \mathrm{C} / \mathrm{s}$.
$1.48 \times 10^{4} \mathrm{C} /(0.364 \mathrm{C} / \mathrm{s})=4.06 \times 10^{4} \mathrm{~s}=11.3 \mathrm{~h}$
S17-12. 1.00 ppt corresponds to $30.0 / 1000=0 / 0300 \mathrm{~mL}$ of $\mathrm{O}_{2} / \mathrm{min}=5.00 \times 10^{-4} \mathrm{~mL}$ of $\mathrm{O}_{2} / \mathrm{s}$. The moles of oxygen in this volume are
$n=\frac{P V}{R T}=\frac{(1.00 \mathrm{bar})\left(5.00 \times 10^{-7} \mathrm{~L}\right)}{\left(0.08314 \mathrm{~L} \text { bar atm K} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)(293 \mathrm{~K})}=2.053 \times 10^{-8} \mathrm{~mol}$
For each mole of O_{2}, four moles of e^{-}flow through the circuit, so
$\mathrm{e}^{-}=8.210 \times 10^{-8} \mathrm{~mol} / \mathrm{s}=8.21 \times 10^{-3} \mathrm{C} / \mathrm{s}=8.21 \mathrm{~mA}$.
An oxygen content of 1.00 ppm would give a current of $8.21 \mu \mathrm{~A}$ instead.
S17-13. The Zn^{2+} reacts first with PDTA freed by the reduction of $\mathrm{Hg}(\text { PDTA })^{2-}$ in the region BC .
Then additional Zn^{2+} goes on to liberate Hg^{2+} from $\mathrm{Hg}(\mathrm{PDTA})^{2-}$.
This additional Hg^{2+} is reduced in the region DE.
The total Hg^{2+}, equivalent to the added Zn^{2+}, equals one-half the coulombs measured in regions BC and DE (because $2 \mathrm{e}^{-}$react with $1 \mathrm{Hg}^{2+}$).
Coulombs $=3.89+14.47=18.36$.
Moles of Hg^{2+} reduced $=0.5(18.36 \mathrm{C}) /(96485 \mathrm{C} / \mathrm{mol})=9.514 \times 10^{-5} \mathrm{~mol}$.
$\left[\mathrm{Zn}^{2+}\right]=9.514 \times 10^{-5} \mathrm{~mol} / 2.00 \times 10^{-3} \mathrm{~L}=0.04757 \mathrm{M}$.
S17-14. (a) cathode: $\mathrm{Ce}^{4+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ce}^{3+} \quad E^{\circ}=1.70 \mathrm{~V}$
anode: $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$
net: $\mathrm{Ce}^{4+}+\mathrm{Fe}^{2+} \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{Ce}^{3+}$$\quad \frac{E^{\circ}=0.771 \mathrm{~V}}{E^{\circ}=1.70-0.771=0.93 \mathrm{~V}}$
$E_{\text {galvanic }}=E($ cathode $)-E($ anode $)-I R$ $=\left\{1.70-0.05916 \log \frac{[0.050]}{[0.10]}\right\}$
$-\left\{0.771-0.05916 \log \frac{[0.10]}{[0.10]}\right\}-(0.0300 \mathrm{~A})(3.50 \Omega)=0.84 \mathrm{~V}$
(b) $E_{\text {electrolysis }}=-[E($ cathode $)-E($ anode $)]-I R=-1.06 \mathrm{~V}$
(c) $E_{\text {galvanic }}=E($ cathode $)-E($ anode $)-I R$

$$
\begin{aligned}
= & \left\{1.70-0.05916 \log \frac{[0.180]}{[0.070]}\right\} \\
& \quad-\left\{0.771-0.05916 \log \frac{[0.050]}{[0.160]}\right\}-(0.100 \mathrm{~A})(3.50 \Omega) \\
= & 1.676-0.801-0.350=0.52 \mathrm{~V}
\end{aligned}
$$

S17-15. In controlled-potential electrolysis, the potential of the working electrode is not allowed to vary. With two electrodes, the potential of the working electrode becomes more extreme as the concentration of reactant changes. Eventually the electrode potential reaches a range where other reactions can occur.

S17-16. Cathodic depolarizer
S17-17. (a) Since Mn is oxidized, it is the anode.
(b) $\frac{(2.60 \mathrm{C} / \mathrm{s})(18.0 \times 60 \mathrm{~s})}{96485 \mathrm{C} / \mathrm{mol}}=0.02910 \mathrm{~mol}$ of $\mathrm{e}^{-}=0.00970 \mathrm{~mol}$ of M (since one mole of M gives $3 \mathrm{e}^{-}$). $\quad 0.504 \mathrm{~g} / 0.00970 \mathrm{~mol}=52.0 \mathrm{~g} / \mathrm{mol}$
(c) In the electrolysis $0.02910 / 2=0.01455 \mathrm{~mol}$ of Mn^{2+} were produced.
$\left[\mathrm{Mn}^{2+}\right]=0.0250+0.01455=0.0396 \mathrm{M}$.
S17-18. anode: $\quad 1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O} \quad E^{\circ}=1.229 \mathrm{~V}$ cathode: $\quad \mathrm{Zn}\left(\mathrm{OH}^{-}\right)_{4}^{2-}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(s)+4 \mathrm{OH}^{-} \quad E^{\circ}=-1.199 \mathrm{~V}$

S17-19. Relevant information :

$$
\begin{array}{ll}
\mathrm{CuY}^{2-}+2 \mathrm{e}^{-}=\mathrm{Cu}(s)+\mathrm{Y}^{4-} & E^{\circ}=-0.216 \mathrm{~V} \\
\mathrm{Co}^{2+}+2 \mathrm{e}^{-}=\mathrm{Co}(s) & E^{\circ}=-0.282 \mathrm{~V}
\end{array}
$$

$$
\mathrm{CoY}^{2-} K_{\mathrm{f}}=2.0 \times 10^{16}
$$

$$
\begin{aligned}
& E=E(\text { cathode })-E(\text { anode })-I R-\text { overpotential } \\
& =\left\{-1.199-\frac{0.05916}{2} \log \frac{\left[\mathrm{OH}^{-}\right]^{4}}{\left[\mathrm{Zn}(\mathrm{OH})_{4} 4^{2-}\right.}\right\} \\
& -\left\{1.229-\frac{0.05916}{2} \log \frac{1}{P_{\mathrm{O}_{2}}{ }^{1 / 2}\left[\mathrm{H}^{+}\right]^{2}}\right\}-I R-\text { overpotential } \\
& =\left\{-1.199-\frac{0.05916}{2} \log \frac{[0.10]^{4}}{[0.010]}\right\} \\
& -\left\{1.229-\frac{0.05916}{2} \log \frac{1}{[0.20]^{1 / 2}\left[1.0 \times 10^{-13}\right]^{2}}\right\}-I R-\text { overpotential } \\
& =-1.140-0.450-(0.20 \mathrm{~A})(0.35 \Omega)-0.519=-2.179 \mathrm{~V}
\end{aligned}
$$

$$
\alpha_{Y} 4-=3.8 \times 10^{-9} \text { at } \mathrm{pH} 4
$$

When 99% of CuY^{2-} is reduced, $\left[\mathrm{CuY}^{2-}\right]=1.0 \times 10^{-8} \mathrm{M}$.

$$
\begin{aligned}
& E(\text { cathode })=-0.216-\frac{0.05916}{2} \log \frac{\left[\mathrm{Y}^{4-}\right]}{\left[\mathrm{CuY}^{2-}\right]} \\
& \operatorname{But}\left[\mathrm{Y}^{4-}\right]=\alpha_{\mathrm{Y}} 4-[\text { EDTA }]=\left(3.8 \times 10^{-9}\right)(0.010 \mathrm{M})=3.8 \times 10^{-11} \mathrm{M} \\
& \quad \Rightarrow E(\text { cathode })=-0.144 \mathrm{~V}
\end{aligned}
$$

Will this cathode potential reduce Co^{2+} ?
$\alpha_{\mathrm{Y}} 4-K_{\mathrm{f}}\left(\right.$ for $\left.\mathrm{CoY}^{2-}\right)=\frac{\left[\mathrm{CoY}^{2-}\right]}{\left[\mathrm{Co}^{2+}\right][\mathrm{EDTA}]} \Rightarrow\left[\mathrm{Co}^{2+}\right]=1.3 \times 10^{-8} \mathrm{M}$
$E\left(\right.$ cathode, $\left.\mathrm{Co}^{2+}\right)=-0.282-\frac{0.05916}{2} \log \frac{1}{1.3 \times 10^{-8}}=-0.515 \mathrm{~V}$
The cobalt will not be reduced and the separation is feasible.
S17-20. (a) $n=\frac{P V}{R T}=\frac{(0.996 \mathrm{bar})(0.04922 \mathrm{~L})}{\left(0.08314 \mathrm{~L} \mathrm{bar} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)(303 \mathrm{~K})}=1.946 \mathrm{mmol}^{\text {of } \mathrm{H}_{2}}$
(b) For every mole of H_{2} produced, 2 moles of e^{-}are consumed and one mole of Cu is oxidized. Therefore, 1.946 mmol of Cu^{2+} are produced and the concentration of EDTA is $1.946 \mathrm{mmol} / 47.36 \mathrm{~mL}=0.04109 \mathrm{M}$.
(c) 1.946 mmol of H_{2} comes from $2(1.946)=3.892 \mathrm{mmol}$ of e^{-}
$=\left(3.892 \times 10^{-3}\right)(96485)=3.755 \times 10^{2} \mathrm{C}$
Time $=3.755 \times 10^{2} \mathrm{C} /(0.02196 \mathrm{C} / \mathrm{s})=1.710 \times 10^{4} \mathrm{~s}=4.75 \mathrm{~h}$.
S17-21. Trichloroacetate is reduced at -0.90 V , consuming $224 \mathrm{C} /(96485 \mathrm{C} / \mathrm{mol})=2.322 \mathrm{mmol}$ of e^{-}. This means that $(1 / 2)(2.322)=1.161 \mathrm{mmol}$ of $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}(\mathrm{FM} 163.386)$

$$
=0.1897 \mathrm{~g} \text { of } \mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H} \text { were present. }
$$

The total quantity of $\mathrm{Cl}_{2} \mathrm{HCCO}_{2} \mathrm{H}(\mathrm{FM} 128.943)$ is $(1 / 2)[758 \mathrm{C} /(96485 \mathrm{C} / \mathrm{mol})]=3.928$
mmol, of which 1.161 mmol came from reduction of $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$.
$\mathrm{Cl}_{2} \mathrm{HCCO}_{2} \mathrm{H}$ in original sample $=3.928-1.161=2.767 \mathrm{mmol}=0.3568 \mathrm{~g}$.
$\mathrm{wt} \%$ trichloroacetic acid $=\frac{0.1897}{0.721} \times 100=26.3 \%$
$\mathrm{wt} \%$ dichloroacetic acid $=\frac{0.3568}{0.721} \times 100=49.5 \%$

S17-22. (a) Because 1 ampere $=1$ coulomb/s, we can say $C=A \cdot s$:
coulombs $=\left(1.68 \times 10^{-3} \mathrm{~s}\right)(154.4 \mathrm{~min})(60 \mathrm{~s} / \mathrm{min})=15.5_{6} \mathrm{C}$
moles of electrons $=\left(15.5_{6} \mathrm{C}\right) /(96485 \mathrm{C} / \mathrm{mol})=1.613 \times 10^{-4} \mathrm{~mol}$
(b) One formula unit of polymer contains n pyrrole monomers and
one anion.moles of polymer formula units $=\frac{13.5 \times 10^{-3} \mathrm{~g}}{[n(65.075)+325.49] \mathrm{g} / \mathrm{mol} \text { formula unit }}$
For every formula unit of polymer, $2 n+1$ electrons flow through the circuit.
The key stoichiometry relationship is:

$$
\begin{aligned}
\text { moles of polymer formula units } & =\frac{\text { moles of electrons }}{2 n+1} \\
\frac{13.5 \times 10^{-3} \mathrm{~g}}{[n(65.075)+325.49] \mathrm{g} / \mathrm{mol} \text { formula unit }} & =\frac{1.61_{3} \times 10^{-4} \mathrm{~mol}}{2 n+1} \Rightarrow n=2.36
\end{aligned}
$$

S17-23. Slope $=11.91 \quad$ standard deviation $=0.12$
intercept $=-0.012$ standard deviation $=0.017$
$\sigma_{y}=0.033=$ standard deviation of current
The concentration of Al^{3+}, when $I_{\mathrm{d}}=0.904 \mu \mathrm{~A}$, is found as follows :

$$
\begin{gathered}
I(\mathrm{~mA})=m\left[\mathrm{Al}^{3+}\right]+b \\
{\left[\mathrm{Al}^{3+}\right]=\frac{I-b}{m}=\frac{0.904-(-0.012)}{11.91}=0.0769 \mathrm{mM}}
\end{gathered}
$$

Equation 5-14 gives an uncertainty of $\pm 0.0029 \mathrm{mM}$
S17-24. $\frac{[\mathrm{X}]_{\mathrm{i}}}{[\mathrm{S}]_{\mathrm{f}}+[\mathrm{X}]_{\mathrm{f}}}=\frac{I_{\mathrm{X}}}{I_{\mathrm{S}}+\mathrm{X}}$

$$
\frac{x(\mathrm{ppm})}{2.65\left(\frac{0.500}{3.50}\right)+x\left(\frac{3.00}{3.50}\right)}=\frac{152 \mathrm{nA}}{206 \mathrm{nA}} \Rightarrow x=0.760 \mathrm{ppm}
$$

S17-25. Use the internal standard equation with $\mathrm{X}=\mathrm{DDT}$ and $\mathrm{S}=$ chloroform.
From the standard mixture we find the response factor, F :

$$
\frac{\text { signal }_{\mathrm{X}}}{[\mathrm{X}]}=F\left(\frac{\text { signalS }^{[\mathrm{S}]}}{[}\right) \Rightarrow \frac{1.00}{[1.00 \mathrm{mM}]}=F\left(\frac{1.40}{[1.00 \mathrm{mM}]}\right) \Rightarrow F=0.714_{3}
$$

For the unknown mixture, we can say

$$
\operatorname{signal}_{\mathrm{X},[\mathrm{X}])}=F\left(\frac{\text { signal }}{[\mathrm{S}]}\right) \Rightarrow \frac{1.00}{[\mathrm{DDT}]}=0.714_{3}\left(\frac{0.86}{[0.500 \mathrm{mM}]}\right) \Rightarrow[\mathrm{DDT}]=0.81 \mathrm{mM}
$$

S17-26. If the conditions were perfectly reproducible, the diffusion current for Tl^{+}in experiment B would be $(1.21 / 1.15)(6.38)=6.71 \mu \mathrm{~A}$. The observed current in experiment B is only $6.11 / 6.71=91.1 \%$ of the expected value. That is, in experiment B the response is only 91.1% as great as in experiment A. Therefore, the responses to Cd^{2+} and Zn^{2+} in experiment B are expected to be only 91.1% as great as they are in experiment A

$$
\left[\mathrm{Cd}^{2+}\right]=\frac{(4.76 / 6.48)}{0.911}(1.02)=0.82 \mathrm{mM}
$$

$$
\left[\mathrm{Zn}^{2+}\right]=\frac{(8.54 / 6.93)}{0.911}(1.23)=1.66 \mathrm{mM}
$$

S17-27. The graph of current vs. scan rate gives a straight line with an intercept reasonably near zero. The analyte is confined to the electrode surface. Otherwise, the graph of current vs. $\sqrt{\text { scan rate }}$ would give the better straight line.

S17-28. (a) Slope $=+0.049 \mathrm{~V}=0.059(q-p) \Rightarrow q-p \approx+1$. That is, the oxidized species has one more imidazole ligand than the reduced species. The chemistry is either $\mathrm{ML}^{+}+\mathrm{L}+\mathrm{e}^{-} \rightarrow \mathrm{ML}_{2}$ or $\mathrm{M}^{+}+\mathrm{L}+\mathrm{e}^{-} \rightarrow \mathrm{ML}$.
Intercept $=0.029 \mathrm{~V}=E_{1 / 2}^{\text {free }}-0.059 \log \left(\beta_{\mathrm{p}}^{\mathrm{ox}} / \beta_{\mathrm{q}}^{\text {red }}\right)$.
Putting in $E_{1 / 2}^{\text {free }}=-0.18 \mathrm{~V}$ gives $\log \left(\beta_{\mathrm{p}}^{\mathrm{ox}} / \beta_{\mathrm{q}}^{\mathrm{red}}\right)=-3.5$.
(b) Since the slope is zero, the reaction is either $\mathrm{ML}_{2}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{ML}_{2}$ or $\mathrm{ML}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{ML}$.

It cannot be $\mathrm{M}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{M}$ because the product has one fewer ligand at lower free ligand concentration $(-3.4<\log [\mathrm{L}]<-2.1)$, and the product cannot have a negative number of ligands.
The reaction sequence in parts (a) and (b) has been interpreted as
(a) $\mathrm{ML}^{+}+\mathrm{L}+\mathrm{e}^{-} \rightarrow \mathrm{ML}_{2}$
(b) $\mathrm{ML}_{2}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{ML}_{2}$

S17-29. The end point (0.675 mL) in the figure below is where the linear current increase extrapolates back to zero. Two moles of NH_{3} require 3 moles of OBr^{-}

$$
\left[\mathrm{OBr}^{-}\right]=(3 / 2) \frac{(30.0 \mathrm{~mL})\left(4.43 \times 10^{-5} \mathrm{mmol} / \mathrm{mL}\right)}{0.675 \mathrm{~mL}}=2.95 \mathrm{mM}
$$

S17-30. 34.61 mL of methanol with 4.163 mg of $\mathrm{H}_{2} \mathrm{O} / \mathrm{mL}$ contains $144.08 \mathrm{mg} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ $=7.9978 \mathrm{mmol}$ of $\mathrm{H}_{2} \mathrm{O}$.
The titration of "dry" methanol tells us that 25.00 mL of methanol reacts with 3.18 mL of reagent.

Therefore, 34.61 mL of methanol will react with (34.61/25.00)(3.18)
$=4.40 \mathrm{~mL}$ of Karl Fischer reagent. The titer of the reagent is

$$
\frac{7.9978 \mathrm{mmol} \mathrm{H}_{2} \mathrm{O}}{(25.00-4.40) \mathrm{mL} \text { reagent }}=0.38824 \frac{\mathrm{mmol} \mathrm{H}_{2} \mathrm{O}}{\mathrm{~mL} \text { reagent }}
$$

Reagent needed to react with 1.000 g of salt in 25.00 mL of methanol $=(38.12-3.18)$
$=34.94 \mathrm{~mL} . \mathrm{H}_{2} \mathrm{O}$ in 1.000 g of salt $=(0.38824)(34.94)=13.565 \mathrm{mmol}$
$=244.38 \mathrm{mg}$ of $\mathrm{H}_{2} \mathrm{O}=24.44 \mathrm{wt} \%$ of the crystal.
S17-31.(a)

(b) $m=7.002(\pm 0.005) \times 10^{7}$

$$
b=-1.5(\pm 1.9) \quad s_{\mathrm{y}}=5.0
$$

(c) Concentration $=\frac{\text { current }- \text { intercept }}{\text { slope }}=\frac{300(\pm 15)-[-1.5(\pm 1.9)]}{7.002(\pm 0.005) \times 10^{7}}$

$$
=\frac{301.5(\pm 15.1)}{7.002(\pm 0.005) \times 10^{7}}=4.3_{1}(\pm 0.22) \times 10^{-6} \mathrm{M}
$$

S17-32. Spreadsheet for weighted least squares

	A	B	C	D	E	F	G	H	I	J	
1	n	X	y	std dev	weight (w)	w*x*y	$\mathrm{w}^{*} \mathrm{x}$	w*y	$\mathrm{w}^{*} \mathrm{x}^{\wedge} 2$	$\mathrm{w}^{*} \mathrm{~d}^{\wedge} 2$	
2	1	$1.00 \mathrm{E}-04$	6995	112	8E-05	6E-05	8E-09	6E-01	8E-13	6E-02	
3	2	$5.00 \mathrm{E}-05$	3510	74	2E-04	3E-05	9E-09	6E-01	5E-13	1E-01	
4	3	$1.00 \mathrm{E}-05$	698	11	8E-03	6E-05	8E-08	$6 \mathrm{E}+00$	8E-13	2E-02	
5	4	$5.00 \mathrm{E}-06$	345	18	3E-03	5E-06	2E-08	$1 \mathrm{E}+00$	8E-14	3E-02	
6	5	$1.00 \mathrm{E}-06$	64.4	3.9	7E-02	4E-06	7E-08	4E+00	7E-14	$2 \mathrm{E}+00$	
7	6	$5.00 \mathrm{E}-07$	32.4	1.8	3E-01	5E-06	2E-07	$1 \mathrm{E}+01$	8E-14	$1 \mathrm{E}+00$	
8	7	$1.00 \mathrm{E}-07$	6.88	0.64	$2 \mathrm{E}+00$	2E-06	2E-07	$2 \mathrm{E}+01$	2E-14	2E-01	
9	8	$5.00 \mathrm{E}-08$	3.17	0.32	$1 \mathrm{E}+01$	2E-06	5E-07	$3 \mathrm{E}+01$	2E-14	2E-02	
10	9	$2.00 \mathrm{E}-08$	1.03	0.2	$3 \mathrm{E}+01$	5E-07	5E-07	$3 \mathrm{E}+01$	1E-14	8E-04	
11	$\mathrm{n}=$										
12	9										
13		$1.667 \mathrm{E}-4$	11656		$4 \mathrm{E}+01$	2E-04	2E-06	$1 \mathrm{E}+02$	2E-12	$3 \mathrm{E}+00$	
14		\|<-----------------------------Column sums (B-J)------------------------------>->->									
15	$\mathrm{D}=$	sigma(y)			Example: E13 = Sum(E2:E10)						
16	$8.623 \mathrm{E}-11$	6.93E-01									
17	$\mathrm{m}=$	sigma $(\mathrm{m})=$		$\mathrm{E} 2=1 / \mathrm{D} 2^{\wedge} 2$		$\mathrm{H} 2=\mathrm{E} 2 * \mathrm{C} 2$					
18	$6.967 \mathrm{E}+07$	$4.58 \mathrm{E}+05$		$\mathrm{F} 2=\mathrm{E} 2 * \mathrm{~B} 2 * \mathrm{C} 2$		$\mathrm{I} 2=\mathrm{E} 2 * \mathrm{~B} 2 * \mathrm{~B} 2$					
19	$\mathrm{b}=$	$\underset{=}{\operatorname{sigma}(\mathrm{b})}$		$\mathrm{G} 2=\mathrm{E} 2 * \mathrm{~B} 2$		$\mathrm{J} 2=\mathrm{E} 2 *\left(\mathrm{C} 2-\$ \mathrm{~A} 188^{*} 2-\$ \mathrm{~A} \$ 20\right)^{\wedge} 2$					
20	-3.578E-01	$1.15 \mathrm{E}-01$									
21											
22	$\mathrm{D}=\mathrm{E} 13 * \mathrm{I} 13-\mathrm{G} 13 * \mathrm{G} 13$				$\operatorname{sigma}(\mathrm{y})=\operatorname{Sqrt}(\mathrm{J} 13 /(\mathrm{A} 12-2))$						
23	$\mathrm{m}=(\mathrm{E} 13 * \mathrm{~F} 13-\mathrm{G} 13 * \mathrm{H} 13) / \mathrm{A} 16$				$\operatorname{sigma}(\mathrm{m})=\mathrm{B} 16 * \operatorname{Sqrt}(\mathrm{E} 13 / \mathrm{A} 16)$						
24	$\mathrm{b}=(\mathrm{H} 13 * \mathrm{I} 13-\mathrm{G13} * \mathrm{~F} 13) / \mathrm{A} 16$				$\operatorname{sigma}(\mathrm{b})=\mathrm{B} 16 * \operatorname{Sqrt}(\mathrm{I} 13 / \mathrm{A} 16)$						

Unweighted parameters:
$m=7.002(\pm 0.005) \times 10^{7}$
$b=-1.5(\pm 1.9)$
$s_{\mathrm{y}}=5.0$

Weighted parameters:

$$
\begin{aligned}
& m=6.967(\pm 0.046) \times 10^{7} \\
& b=-0.36(\pm 0.12) \\
& s_{\mathrm{y}}=0.693
\end{aligned}
$$

S17-33. (a) $A=0.97 \pm 0.95 \quad B=1.385 \pm 0.027 \quad C=-0.00123 \pm 0.00014 \quad s_{\mathrm{y}}=0.919$
(b)

(c) Current $=\mathrm{A}+\mathrm{B}[\alpha$-tocopherol $]+\mathrm{C}[\alpha \text {-tocopherol }]^{2}$
$170=0.967+1.385\left[\alpha\right.$-tocopherol] $-0.00123[\alpha \text {-tocopherol }]^{2}$
$\Rightarrow[\alpha$-tocopherol $]=139.3 \mu \mathrm{~g} / \mathrm{mL}$
$171=0.967+1.385\left[\alpha\right.$-tocopherol] $-0.00123[\alpha \text {-tocopherol }]^{2}$
$\Rightarrow[\alpha$-tocopherol $]=140.2 \mu \mathrm{~g} / \mathrm{mL}$
$169=0.967+1.385\left[\alpha\right.$-tocopherol] $-0.00123[\alpha \text {-tocopherol }]^{2}$
$\Rightarrow[\alpha$-tocopherol $]=138.3 \mu \mathrm{~g} / \mathrm{mL}$
Answer: $[\alpha$-tocopherol] $=139 \pm 1 \mu \mathrm{~g} / \mathrm{mL}$
S17-34. To find the unknown concentration, we set up a proportionality:

$$
\begin{aligned}
& \frac{\left[\mathrm{Pb}^{2+}\right]_{\text {unknown }}}{\left[\mathrm{Pb}^{2+}\right]_{\text {unknown }}+\left[\mathrm{Pb}^{2+}\right]_{\text {standard }}}=\frac{(\text { stripping time })_{\text {unknown }}}{(\text { stripping time })_{\text {unknown }}+\text { standard }} \\
& \frac{\left[\mathrm{Pb}^{2+}\right]_{\text {unknown }}}{\left[\mathrm{Pb}^{2+}\right]_{\text {unknown }}+0.5 \mu \mathrm{~g} / \mathrm{L}}=\frac{4.8 \mathrm{~s}}{8.8 \mathrm{~s}} \Rightarrow\left[\mathrm{~Pb}^{2+}\right]_{\text {unknown }}=0.6 \mu \mathrm{~g} / \mathrm{L}=2.9 \times 10^{-9} \mathrm{M}
\end{aligned}
$$

S17-35. $\frac{\left[\mathrm{Cu}^{2+}\right]_{\text {unknown }}}{\left[\mathrm{Cu}^{2+}\right]_{\text {unknown }}+\left[\mathrm{Cu}^{2+}\right]_{\text {standard }}}=\frac{(\text { stripping time })_{\text {unknown }}}{(\text { stripping time })_{\text {unknown }}+\text { standard }}$

$$
\frac{\left[\mathrm{Cu}^{2+}\right]_{\text {unknown }}}{\left[\mathrm{Cu}^{2+}\right]_{\text {unknown }}+0.5 \mu \mathrm{~g} / \mathrm{L}}=\frac{8.6 \mathrm{~s}}{13.4 \mathrm{~s}} \Rightarrow\left[\mathrm{Cu}^{2+}\right]_{\text {unknown }}=0.90 \mu \mathrm{~g} / \mathrm{L}=1.4 \times 10^{-8} \mathrm{M}
$$

S17-36.

S17-37. $\frac{\left[\mathrm{Cd}^{2+}\right]_{\text {unknown }}}{\left[\mathrm{Cd}^{2+}\right]_{\text {unknown }}+\left[\mathrm{Cd}^{2+}\right]_{\text {standard }}}=\frac{(\text { stripping time })_{\text {unknown }}}{(\text { stripping time })_{\text {unknown }}+\text { standard }}$
$\frac{\left[\mathrm{Cd}^{2+}\right]_{\text {unknown }}}{\left[\mathrm{Cd}^{2+}\right]_{\text {unknown }}+0.5 \mu \mathrm{~g} / \mathrm{L}}=\frac{1.0 \mathrm{~s}}{3.7 \mathrm{~s}} \Rightarrow\left[\mathrm{Cd}^{2+}\right]_{\text {unknown }}=0.19 \mu \mathrm{~g} / \mathrm{L}=1.6 \times 10^{-9} \mathrm{M}$
S17-38. The equation of the straight line is time $(\mathrm{s})=8.00\left[\mathrm{Cu}^{2+}\right](\mu \mathrm{g} / \mathrm{L})+8.57$
The x-intercept gives the concentration in the unknown $=1.07 \mu \mathrm{~g} / \mathrm{L}$
S17-39. The initial solution has a high concentration of Fe^{2+} and a low concentration of Fe^{3+}, so the current is low. As titrant is added, Fe^{2+} is converted to Fe^{3+} and the $\mathrm{Fe}^{3+} \mid \mathrm{Fe}^{2+}$ redox couple carries maximum current near the middle of the titration. As we approach the equivalence point, there is a high concentration of Fe^{3+} and little Fe^{2+}, so the current decreases (to near zero at the equivalence point). After the equivalence point, excess Ce^{4+} is added to the pot containing Ce^{3+} from the titration reaction. The current increases again as the $\mathrm{Ce}^{4+} \mid \mathrm{Ce}^{3+}$ couple reacts at the two electrodes.

S17-40. (a) The initial solution contains $\mathrm{H}_{3} \mathrm{AsO}_{3}$ and Br^{-}, neither of which can support a substantial current between two Pt electrodes. Only a small residual current is expected. ${\mathrm{As} \mathrm{BrO}_{3}^{-} \text {is }}^{-}$ added, it is converted to Br_{2} and then to Br^{-}by reaction with $\mathrm{H}_{3} \mathrm{AsO}_{3}$.
Since the $\mathrm{H}_{3} \mathrm{AsO}_{4} \mid \mathrm{H}_{3} \mathrm{AsO}_{3}$ does not conduct current, the current remains small.
After the equivalence point, when both Br_{2} and Br^{-}are present, substantial current flows by virtue of oxidation of Br^{-}at one electrode and reduction of Br_{2} at the other.. The expected titration curve is level near zero current until the end point, and then it increases steadily.
(b) Initially there is no easy mechanism for carrying current, so the voltage will be high. As I_{2} is added, it is converted to I^{-}and $\mathrm{H}_{3} \mathrm{AsO}_{3}$ is oxidized to $\mathrm{H}_{3} \mathrm{AsO}_{4}$.
Since the $\mathrm{H}_{3} \mathrm{AsO}_{3} \mid \mathrm{H}_{3} \mathrm{AsO}_{4}$ couple does not carry current (as stated in part a), the voltage remains high. Only after the end point, when both I_{2} and I^{-}are present, does the voltage drop to near zero. The titration curve is expected to look like the one in Demonstration 18-1.

S17-41. The standard curve is moderately linear with slope $=0.00419 \mu \mathrm{~A} / \mathrm{ppb}$ and intercept of 0.0198.
The concentration of Ni^{2+} when $54.0 \mu \mathrm{~L}$ of 10.0 ppm solution is added to 5.00 mL is $\left(\frac{0.0540 \mathrm{~mL}}{5.0540 \mathrm{~mL}}\right)(10.0 \mathrm{ppm})=0.107 \mathrm{ppm}=107 \mathrm{ppb}$
The expected current is $I=m\left[\mathrm{Ni}^{2+}\right]+b=(0.00419)(107)+0.0198=0.468 \mu \mathrm{~A}$ A careful examination of the standard curve shows that a better fit might be obtained if the slope and intercept of just the first seven points are calculated. The curve appears to be starting to level off at the higher concentration in this experiment.

S17-42. Sample height $(\mathrm{mm})=26.8-2.4=24.4$
Sample $+1 \mathrm{ppm} \mathrm{Cu}=42.2-5.6=36.6$
Sample $+2 \mathrm{ppm} \mathrm{Cu}=57.8-8.7=49.1$
The average response to added Cu is $\frac{(36.6-24.4)+(49.1-24.4)}{3}=12.3 \frac{\mathrm{~mm}}{\mathrm{ppm} \mathrm{Cu}}$
The initial sample must have contained $\frac{24.4}{12.3}=1.98 \mathrm{ppm} \mathrm{Cu}$.
S17-43. A graph of $E_{1 / 2}$ versus $\log \left[\mathrm{OH}^{-}\right]$is shown below.
All but the lowest two points appear to lie on a line whose equation is

$$
E_{1 / 2}=-0.0806 \log \left[\mathrm{OH}^{-}\right]-0.763
$$

$E_{1 / 2}$ is related to $E_{1 / 2}$ for a free metal ion in a noncomplexing medium by the following equation.

$$
E_{1 / 2}=E_{1 / 2}\left(\text { for free } \mathrm{M}^{n+}\right)-\frac{0.05916}{n} \log \beta_{p}-\frac{0.05916 p}{n} \log \left[\mathrm{~L}^{-b}\right]
$$

where β_{p} is the equilibrium constant for the reaction $\mathrm{M}^{n+}+p \mathrm{~L}^{-b}=\mathrm{ML}_{p}^{n-p b}$.
The slope of the graph is $-0.05916 p / n$. Assuming that $\mathrm{n}=2$, we calculate p as follows:

$$
p=\frac{(n)(\text { slope })}{-0.05916}=2.72 \approx 3
$$

The intercept is given by
intercept $=E_{1 / 2}\left(\right.$ for free $\left.\mathrm{Pb}^{2+}\right)-\frac{-0.05916}{n} \log \beta_{3}$
$-0.763=-0.41-\frac{-0.05916}{2} \log \beta_{3} \Rightarrow \beta_{3}=9 \times 10^{11}$

S17-44. Initially there is no redox couple to carry current, so the potential will be high. As Ce^{4+} is added, Fe^{2+} is converted to Fe^{3+}, the mixture of which can support current flow by the reactions

$$
\text { anode: } \mathrm{Fe}^{2+}=\mathrm{Fe}^{3+}+\mathrm{e}^{-} \quad \text { cathode: } \mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+}
$$

The potential will therefore decrease. At the equivalence point, all of the Fe^{2+} and all of the Ce^{4+} are consumed, so the potential is very high. Beyond the equivalence point, the redox couple $\mathrm{Ce}^{4+} \mid \mathrm{Ce}^{3+}$ can support a current and the potential will be low again. The expected curve is shown below:

S17-45. See Figures 17-15 and 17-18.
S17-46. $\frac{[\mathrm{X}]_{\mathrm{i}}}{[\mathrm{S}]_{\mathrm{f}}+[\mathrm{X}]_{\mathrm{f}}}=\frac{I_{\mathrm{X}}}{I_{\mathrm{S}}+\mathrm{X}}$

$$
\frac{[\mathrm{X}]_{\mathrm{i}}}{\left(\frac{1.00}{101.0}\right)(0.0500)+\left(\frac{100.0}{101.0}\right)[\mathrm{X}]_{\mathrm{i}}}=\frac{10.0}{14.0} \Rightarrow[\mathrm{X}]_{\mathrm{i}}=1.21 \mathrm{mM}
$$

S17-47. The least squares parameters for a graph of $I_{\mathrm{d}} \mathrm{vs}\left[\mathrm{Cu}^{2+}\right]$ are

$$
\begin{array}{ll}
\text { slope }=m=6.616 & \text { standard deviation }=0.018 \\
\text { intercept }=b=-0.086 & \text { standard deviation }=0.062 \\
\sigma_{\mathrm{y}}=0.142 &
\end{array}
$$

An unknown giving a current of $15.6 \mu \mathrm{~A}$ has a concentration of

$$
\left[\mathrm{Cu}^{2+}\right]=\frac{\left(I_{\mathrm{d}}-b\right)}{m}=\frac{15.6-(-0.086)}{6.616}=2.371 \mathrm{mM}
$$

and an uncertainty calculated with Equation 5-14:
uncertainty $= \pm 0.023 \Rightarrow\left[\mathrm{Cu}^{2+}\right]=2.37(\pm 0.02) \mathrm{mM}$
S17-48. The relative heights of the signals for acetone are $\frac{\text { signal for unknown }}{\text { signal for unknown }+ \text { standard }}=0.259$

$$
\begin{aligned}
& \frac{[\mathrm{X}]_{\mathrm{i}}}{[\mathrm{~S}]_{\mathrm{f}}+[\mathrm{X}]_{\mathrm{f}}}=\frac{I_{\mathrm{X}}}{I_{\mathrm{S}+\mathrm{X}}} \\
& \frac{x(\mathrm{wt} \%)}{0.00100+x}=0.259 \Rightarrow x=0.00035 \mathrm{wt} \%
\end{aligned}
$$

S17-49. At room temperature the interconversion between axial and equatorial conformations is much faster than the reduction, and one peak is seen (near -2.5 V). At low temperature, interconversion slows down and we observe one reduction wave for each molecule. It turns out that the -2.5 V signal is from the axial molecule and the -3.1 V signal is from the equatorial molecule. At -80° the relative heights of the waves are close to the relative equilibrium concentrations, because interconversion is much slower than reduction. At -60°, some of the axial species $(-3.1 \mathrm{~V})$ is converted to the equatorial species $(-2.5 \mathrm{~V})$ at a rate similar to the rate of reduction of the equatorial species. If the voltage scan rate is increased, less interconversion occurs and the -3.1 V signal grows relative to the -2.5 V signal.

S17-50. Addition of 2-methylimidazole makes it easier to reduce $\mathrm{PFe}^{+}(-0.18 \mathrm{~V}$ shifts to $-0.14 \mathrm{~V})$ and harder to reduce $\mathrm{PFe}(-1.02 \mathrm{~V}$ shifts to $-1.11 \mathrm{~V})$. Therefore, Fe^{2+} is stabilized the most.

S17-51. The high overpotential for reduction of H^{+}at a mercury surface allows thermo-dynamically less favorable reductions to occur without competitive reduction of H^{+}. However, Hg is too easily oxidized to be used for anodic reactions.

S17-52. (a) You need to decide how to treat the baseline. I drew a horizontal line at the position of the gentle maximum in the baseline near -0.9 V and measured peak heights above this baseline for the Cr peak near -1.23 V . Here are my results, which should be considered as relative numbers.

Curve	measured peak height	corrected peak height
Baseline (a)	0.3	+0
Unknown (b)	20.3	20.0
Unknown +0.25 ppb Cr	27.8	27.5
Unknown +0.50 ppb Cr	37.8	37.5
Unknown +0.75 ppb Cr	44.3	44.0

Multiplying the x-intercept by 2.00×10^{5} tells us that the soil contains 122 ppm of $\mathrm{Cr}(\mathrm{VI})$.
(b) A least-squares spreadsheet gives the following parameters:

Equation of line: $y=32.80 x+19.95 ; s_{y}=1.0124 ; \bar{y}=32.25 ; \bar{x}=0.375$
Putting these numbers into Equation 5-17 (with $n=4$ points) gives standard deviation of unknown concentration $=0.056$. Multiplying $0.608 \pm 0.056 \mathrm{ppb}$ by 2.00×10^{5} gives $[\mathrm{Cr}(\mathrm{VI})]$ in soil $=122 \pm 11 \mathrm{ppm}$.

S18-1. Using $v=\mathrm{c} / \lambda, \tilde{v}=1 / \lambda$, and $\mathrm{E}=\mathrm{h} v$, we find
$\underline{250 \mathrm{~nm}}$
$v(\mathrm{hz})$
1.20×10^{15}
4.00×10^{4}
7.95×10^{-19}
479
$\underline{10 \mu \mathrm{~m}}$
3.00×10^{13}
1000
1.99×10^{-20}
12.0

S18-2. (a) $\frac{15.0 \times 10^{-3} \mathrm{~g}}{(384.63 \mathrm{~g} / \mathrm{mol})\left(5 \times 10^{-3} \mathrm{~L}\right)}=7.80 \times 10^{-3} \mathrm{M} \quad$ (b) One tenth dilution $\Rightarrow 7.80 \times 10^{-4} \mathrm{M}$ (c) $\varepsilon=A / b c=0.634 /\left[(0.500 \mathrm{~cm})\left(7.80 \times 10^{-4} \mathrm{M}\right)\right]=1.63 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$

S18-3. Original concentration $=\frac{(0.267 \mathrm{~g}) /(337.69 \mathrm{~g} / \mathrm{mol})}{(0.1000 \mathrm{~L})}=7.91 \times 10^{-3} \mathrm{M}$
Diluted concentration $=\left(\frac{2.000}{100.0}\right)\left(7.91 \times 10^{-3} \mathrm{M}\right)=1.58 \times 10^{-4} \mathrm{M}$
$\varepsilon=\frac{A}{b c}=\frac{0.728}{\left(1.58 \times 10^{-4} \mathrm{M}\right)(2.00 \mathrm{~cm})}=2.30 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$

S18-4. $A=-\log T=0.0851$ for $T=82.2 \%$ and 0.295 for $T=50.7 \%$.
Ratio $=0.0851 / 0.295=0.288$.
S18-5. (a) $\varepsilon=\frac{A}{c b}=\frac{0.494-0.053}{\left(3.73 \times 10^{-5} \mathrm{M}\right)(1.000 \mathrm{~cm})}=1.182 \times 10^{-4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
(b) $c=\frac{A}{\varepsilon b}=\frac{0.777-0.053}{\left(1.182 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)(1.000 \mathrm{~cm})}=6.125 \times 10^{-5} \mathrm{M}$ Original concentration was $\frac{250.0}{5.00}$ times as great $=3.06 \mathrm{mM}$

S18-6. (a) The concentration of phosphorus in solution A is $1.196 \times 10^{-3} \mathrm{M}$. When 0.140 mL of A is diluted to $5.00 \mathrm{~mL},[\mathrm{P}]=3.349 \times 10^{-5} \mathrm{M}$. $\varepsilon=A / b c=(0.829-0.017) /\left[(1.00 \mathrm{~cm})\left(3.349 \times 10^{-5} \mathrm{M}\right)\right]=2.425 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.
(b) $[\mathrm{P}]$ in analyte $=\frac{A}{\varepsilon b}=\frac{(0.836-0.038)}{\left(2.425 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)(1.00 \mathrm{~cm})}=3.291 \times 10^{-5} \mathrm{M}$
$[\mathrm{P}]$ in 1.00 mL of undiluted analyte $=\left(\frac{5.00}{0.300}\right)\left(3.291 \times 10^{-5} \mathrm{M}\right)=5.485 \times 10^{-4} \mathrm{M}$.
1.00 mL contains $5.485 \times 10^{-7} \mathrm{~mol} \mathrm{P}=1.699 \times 10^{-5} \mathrm{~g}=1.26 \%$ phosphorus.

S18-7. If self absorption is negligible, Equation F reduces to $I=k^{\prime} P_{0}\left(1-10^{-\varepsilon_{\mathrm{ex}} \mathrm{b}_{2} \mathrm{c}}\right)$.
At low concentration, this expression reduces to $I=k^{\prime} P_{0}\left(\mathrm{e}_{\mathrm{ex}} b_{2} c \ln 10\right)$ (using the first term of a power series expansion). As the concentration increases, the second expression becomes greater than the first expression. When the first expression is 5% below the second, we can say

$$
k^{\prime} P_{0}\left(1-10^{-\varepsilon_{\mathrm{ex}} b_{2} c}\right)=0.95 k^{\prime} P_{0}\left(\mathrm{e}_{\mathrm{ex}} b_{2} c \ln 10\right) \text { or } 1-10^{-A}=0.95 A \ln 10
$$

By trial and error, this equation can be solved to find that when $A=0.045,1-10^{-A}$ $=0.95 A \ln 10$. (Alternatively, you could make a graph of $1-10^{-A}$ versus A and $0.95 A \ln 10$ versus A. The solution is the intersection of the two curves.)

S18-8. Move the cell diagonally toward the upper right hand side, so that only the lower left corner is illuminated. Then $b_{1}=0$ and b_{3} is minimized.

S18-9.

$\mathrm{C}(\mathrm{M})$	I (multiples of $\left.k^{\prime} P_{\mathrm{o}}\right)$	C	I
10^{-7}	0.0000704	10^{-4}	0.0558
10^{-6}	0.000703	10^{-3}	0.0699
10^{-5}	0.00688	10^{-2}	2.54×10^{-9}

S18-10. Spreadsheet for florescence intensity with self quenching

	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{1}$	E(excitation) $=$	Concentration	Relative Intensity
$\mathbf{2}$	2120	0.0000001	$1.95 \mathrm{E}-04$
$\mathbf{3}$	E(emission) $=$	0.000001	$1.95 \mathrm{E}-03$
$\mathbf{4}$	810	0.00001	$1.89 \mathrm{E}-02$
$\mathbf{5}$	$\mathrm{~b} 1=$	0.0001	$1.40 \mathrm{E}-01$
$\mathbf{6}$		0.001	$7.81 \mathrm{E}-02$
$\mathbf{7}$	$\mathrm{~b} 2=$	0.3	
$\mathbf{8}$			$3.89 \mathrm{E}-11$
$\mathbf{9}$	$\mathrm{~b} 3=$	0.4	
$\mathbf{1 0}$			

S18-11. In the simplest case, the colorimetric reagent in the glass particles reacts completely with analyte in the water. For a given volume of water, the quantity of analyte is proportional to the concentration of analyte. The amount of colorimetric reagent reacting with analyte is proportional to the length of column that has changed color. Even if only a fraction of colorimetric reagent reacts with analyte, the length of column that changes color is still directly proportional to the quantity of analyte in the water.
S18-12. At the intersection of the two lines, $y=m_{1} x+b_{1}=m_{2} x+b_{2} . \quad x=\frac{b_{2}-b_{1}}{m_{1}-m_{2}}=$ $\frac{82(\pm 2)-6.8(\pm 0.7)}{1.08(\pm 0.02)-0.12(\pm 0.02)}=\frac{75.2(\pm 2.82 \%)}{0.96(\pm 2.95 \%)}=78.33(\pm 4.08 \%)=78(\pm 3) \mu \mathrm{L}$

S19-1. Setting $b=0.100 \mathrm{~cm}$, we find

$$
\begin{aligned}
& {[\mathrm{X}]=\frac{\left|\begin{array}{ll}
0.282 & 387 \\
0.303 & 642
\end{array}\right|}{\left|\begin{array}{cc}
1640 & 387 \\
399 & 642
\end{array}\right|}=\frac{(0.282)(642)-(387)(0.303)}{(1640)(642)-(387)(399)}=7.10 \times 10^{-5} \mathrm{M}} \\
& {[\mathrm{Y}]=\frac{\left|\begin{array}{cc}
1640 & 0.282 \\
399 & 0.303
\end{array}\right|}{\left|\begin{array}{cc}
1640 & 387 \\
399 & 642
\end{array}\right|}=4.28 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

S19-2.

	A	B	C	D	E	F	G	H
1	Solving Simultaneous Linear Equations with Excel Matrix Operations							
2								
3	Wavelength	Coefficient Matrix			Absorbance		Concentrations	
4		X	Y	Z	of unknown		in mixture	
5	246	12200	3210	290	0.846		$6.4667 \mathrm{E}-05$	<-[X]
6	298	4140	6550	990	0.400		$1.4179 \mathrm{E}-05$	$<-[\mathrm{Y}]$
7	360	3000	2780	8080	0.555		$3.9799 \mathrm{E}-05$	<- [Z]
8			K		A		C	
9								
10	1. Highlight block of blank cells required for solution (G5:G7)							
11	2. Type the formula " $=$ MMULT(MINVERSE(B5:D7),E5:E7)"							
12	3. Press CONTROL+SHIFT+ENTER on a PC or COMMAND+RETURN on a Mac							
13	4. The answer appears in cells G5:G7							

S19-3. We can use the spreadsheet from the previous problem if we divide the absorbances by 2 to change from a $2.000-\mathrm{cm}$ cell to a $1.000-\mathrm{cm}$ cell.
Putting in absorbances of $0.333,0.249$ and 0.180 gives
$[\mathrm{X}]=2.086 \times 10^{-5} \mathrm{M},[\mathrm{Y}]=2.387 \times 10^{-5}$, and $[\mathrm{Z}]=6.317 \times 10^{-6} \mathrm{M}$.
S19-4. A graph of $\Delta A /[\mathrm{X}]$ versus ΔA is a scattered straight line with a slope of -1.4015 and an intercept of 5.9432.

$$
K=- \text { slope }=1.40 . \quad \Delta \varepsilon=\frac{\text { intercept }}{K P_{0}}=\frac{5.9432}{1.40 \times 0.00100}=4240 \mathrm{M}^{-1} \mathrm{~cm}^{-1}
$$

$[\mathrm{X}](\mathrm{M})$	ΔA	$\Delta A /[\mathrm{X}]$	$[\mathrm{X}](\mathrm{M})$	ΔA	$\Delta A /[\mathrm{X}]$
0	0	-	0.0509	0.280	5.501
0.00509	0.030	5.894	0.0650	0.350	5.385
0.00852	0.050	5.869	0.0779	0.420	5.392
0.0173	0.100	5.780	0.0932	0.490	5.25
0.0295	0.170	5.763	0.1062	0.550	5.179
0.0387	0.220	5.685			

S19-5. For Zn^{2+}, the maximum absorbance occurs at a mole fraction of metal of 0.33 , indicating formation of a 2:1 ligand:metal complex.

For Ga^{3+}, the maximum absorbance at a mole fraction of 0.25 , indicates formation of a 3:1 ligand:metal complex.

S19-6. $340 \mathrm{~nm}: E=h v=h \frac{c}{\lambda}=\left(6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right) \frac{2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}}{340 \times 10^{-9} \mathrm{~m}}=5.84 \times 10^{-19} \mathrm{~J}$
To convert to $\mathrm{J} / \mathrm{mol}$, multiply by Avogadro's number:
$5.84 \times 10^{-19} \mathrm{~J} /$ molecule $\times 6.022 \times 10^{23}$ molecules $/ \mathrm{mol}=352 \mathrm{~kJ} / \mathrm{mol}$.
$613 \mathrm{~nm}: E=\left(6.6261 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right) \frac{2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}}{613 \times 10^{-9} \mathrm{~m}}=3.24 \times 10^{-19} \mathrm{~J}=195 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
The difference between the irradiation energy and the fluorescence energy is $352-195=157 \mathrm{~kJ} / \mathrm{mol}$.

S19-7. (a) The equation for intensity can be solved for K, giving $K=\frac{[\mathrm{S}]\left(1-I_{\mathrm{S}} / I_{\mathrm{S}+\mathrm{x}}\right)}{I_{\mathrm{S}} / I_{\mathrm{S}}+\mathrm{x}-[\mathrm{S}] /([\mathrm{S}]+[\mathrm{X}])}$
Putting in $I_{\mathrm{S}} / I_{\mathrm{S}+\mathrm{x}}=58.7 / 74.5,[\mathrm{~S}]=250 \mu \mathrm{M}$ and $[\mathrm{X}]=200 \mu \mathrm{M}$ gives $K=228 \mu \mathrm{M}$.
(b) Solving the intensity equation for $[\mathrm{X}]$ gives $[\mathrm{X}]=\frac{K[\mathrm{~S}]}{\left(I_{\mathrm{S}} / I_{\mathrm{S}+\mathrm{x}}\right)(K+[\mathrm{S}])-[\mathrm{S}]}-[\mathrm{S}]$

Using the values $I_{\mathrm{S}} / I_{\mathrm{s}+\mathrm{x}}=63.5 / 74.6,[\mathrm{~S}]=250+200=450 \mu \mathrm{M}$ and $K=228 \mu \mathrm{M}$ gives $[\mathrm{X}]=357 \mu \mathrm{M}$.

S19-8. (a) (b) spreadsheet reproduced

S19-9.

	A	B	C	D	E
1	Cramer's rule spreadsheet				
2				Constant	Solution
3	Coefficient matrix (3×3)			vector	vector
4	4800	11100	18900	0.412	1.219E-05
5	7350	11200	11800	0.350	9.295E-06
6	36400	13900	4450	0.632	$1.324 \mathrm{E}-05$
7					
8	Denominator = determinant of coefficient matrix				
9	-1.91768E+12				
10					
11					
12	E14=(D4*B5*C6+D5*B6*C4+B4*C5*D6-C4*B5*D6				
13			-B4*D5*C6-C5*B6*	D4)/A9	
14	E15=(A4*D5*C6+A5*D6*C4+D4*C5*A6-C4*D5*A6				
15			-D4*A5*C6-C5*D6*	A4)/A9	
16	E16=(A4*B5*D6+A5*B6*D4+B4*D5*A6-D4*B5*A6				
17			-B4*A5*D6-D5*B6*A4)/A9		

S19-10 (a) The absorption spectrum shows that the absorbance of fluorescein decreases with increasing pH at a wavelength of 442 nm . Since the chromophore absorbs less light, the emission intensity will also decrease as pH increases. At an excitation wavelength of 488 nm , the situation is reversed: Absorbance increases with increasing pH , and so does emission intensity.
(b) For excitation at 488 nm , the ratio of emission intensities I_{540} / I_{610} is small at low pH and large at high pH . The calibration graph shows that this ratio is sensitive to pH in the range pH 6 to pH 8 and could be used to measure pH in this interval.

S19-11

(a) vol \% O O \begin{tabular}{ccccc}
Film 1

response (V)

\quad

Film 2

response (V)

\quad

Film 1

I_{0} / I_{Q}

\quad

Film 2

$I_{\mathrm{o}} / I_{\mathrm{Q}}$
\end{tabular}

(b) If the sensor obeyed the Stern-Volmer equation, each set of data would give a straight line with a y-intercept of 1 .
(c) Film 1 gives a reasonable straight line but film 2 does not. The dashed line for film 2 is the least-squares straight line fit to the data. The dashed line, which fits the data well, is a quadratic polynomial. In film 2, there are probably multiple environments for $\mathrm{Ru}(\mathrm{II})$ with different quenching characteristics.

CHAPTER 20 SUPPLEMENTARY SOLUTIONS SPECTROPHOTOMETERS

S20-1. (a) The critical angle, θ_{c}, is such that $\left(n_{1} / n_{2}\right) \sin \theta_{\mathrm{c}}=1$. For $n_{1}=2.7$ and $n_{2}=2.0, \theta_{\mathrm{c}}=48^{\circ}$.
That is θ must be $\geq 48^{\circ}$ for total internal reflection.
(b) $\frac{\text { power out }}{\text { power in }}=10^{-\ell(\mathrm{dB} / \mathrm{m}) / 10=10^{-(0.50 \mathrm{~m})(0.0120 \mathrm{~dB} / \mathrm{m}) / 10}=0.9986}$

S20-2. $\quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$, where $n_{1}=1.46$ and $n_{2}=1.63$
(a) If $\theta_{1}=30^{\circ}, \theta_{2}=26.6^{\circ}$
(b) If $\theta_{1}=0^{\circ}, \theta_{2}=0^{\circ}$ (no refraction)

S20-3. (a) For incident light: $n_{\text {air }} \sin \theta=n_{\text {prism }} \sin \alpha \Rightarrow \sin \theta=\frac{n_{\text {prism }} \sin \alpha}{n_{\text {air }}}$
For exiting light: $n_{\text {prism }} \sin \alpha=n_{\text {air }} \sin \theta \Rightarrow \sin \theta=\frac{n_{\text {prism }} \sin \alpha}{n_{\text {air }}}$
Therefore, entrance and exit angles are the same.
(b) $\alpha=30^{\circ}$ if light is parallel to the prism base.

Therefore, $\sin \theta=\frac{(1.500) \sin 30^{\circ}}{1.000} \Rightarrow \theta=48.59^{\circ}$
S20-4. Since exitance is proportional to $T^{4}, \frac{\text { exitance at } 900 \mathrm{~K}}{\text { exitance at } 300 \mathrm{~K}}=\left(\frac{900}{300}\right)^{4}=81$ Exitance at $900 \mathrm{~K}=\left(5.6698 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}}\right)(900 \mathrm{~K})^{4}=3.72 \times 10^{4} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$

S20-5. (a) The mass of a $1-\mathrm{cm}$ length of the cylinder is: (volume) (density)

$$
=\pi \mathrm{r}^{2}(\text { length })\left(7.89 \mathrm{~g} / \mathrm{cm}^{3}\right)=\pi(0.32 \mathrm{~cm})^{2}(1 \mathrm{~cm})\left(7.86 \mathrm{~g} / \mathrm{cm}^{3}\right)=2.53 \mathrm{~g}
$$

The surface area of the $1-\mathrm{cm}$ length of cylinder is

$$
\pi(\text { diameter })(\text { length })=\pi(0.64 \mathrm{~cm})(1 \mathrm{~cm})=2.0_{1} \mathrm{~cm}^{2}
$$

Exitance from iron $=\left(5.6698 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}}\right)(1373 \mathrm{~K})^{4}=2.01 \times 10^{5} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
Exitance from surroundings into iron $=\left(5.6698 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{~K}^{4}}\right)(300 \mathrm{~K})^{4}=459 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
Net energy loss from iron $=\left(2.01 \times 10^{5}-459 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right)=2.01 \times 10^{5} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$

$$
=20.1 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}=20.1 \frac{\mathrm{~J}}{\mathrm{~s} \cdot \mathrm{~cm}^{2}}
$$

Energy loss rate $(\mathrm{J} / \mathrm{s})=\left[\right.$ exitance $\left.\left(\frac{\mathrm{J}}{\mathrm{s} \cdot \mathrm{cm}^{2}}\right)\right]\left[\right.$ surface area $\left.\left(\mathrm{cm}^{2}\right)\right]$

$$
=\left(20.1 \frac{\mathrm{~J}}{\mathrm{~s} \cdot \mathrm{~cm}^{2}}\right)\left(2.0_{1} \mathrm{~cm}^{2}\right)=40.4 \mathrm{~J} / \mathrm{s}
$$

Heat capacity of $1-\mathrm{cm}$ length is $[\operatorname{mass}(\mathrm{g})]\left[\right.$ heat capacity $\left.\left(\frac{\mathrm{J}}{\mathrm{g} \mathrm{K}}\right)\right]=(2.53 \mathrm{~g})\left(0.606 \frac{\mathrm{~J}}{\mathrm{~g} \cdot \mathrm{~K}}\right)$

$$
=1.53 \mathrm{~J} / \mathrm{K}
$$

Cooling rate $=\frac{\text { energy loss rate }}{\text { heat capacity }}=\frac{40.4 \mathrm{~J} / \mathrm{s}}{1.53 \mathrm{~J} / \mathrm{K}}=26 \mathrm{~K} / \mathrm{s}$
(b) The ratio of surface area/volume is 10 times greater so the cooling rate is also 10 times greater $=260^{\circ} \mathrm{C} / \mathrm{s}$.

S20-6. (a) $n \lambda=d(\sin \theta-\sin \phi) \quad 1 \cdot 400 \times 10^{-9} \mathrm{~m}=d\left(\sin 20^{\circ}-\sin 10^{\circ}\right) \Rightarrow d=2.38 \times 10^{-6} \mathrm{~m}$ Lines $/ \mathrm{cm}=1 /\left(2.38 \times 10^{-4} \mathrm{~cm}\right)=4.21 \times 10^{3}$ lines $/ \mathrm{cm}$
(b) $\lambda=1 /\left(1000 \mathrm{~cm}^{-1}\right)=10^{-3} \mathrm{~cm} \Rightarrow d=5.94 \times 10^{-3} \mathrm{~cm} \Rightarrow 168$ lines $/ \mathrm{cm}$

S20-7. (a) Resolution $=\frac{\lambda}{\Delta \lambda}=\frac{443.531}{0.072}=6.2 \times 10^{3}$
For $\lambda=443.495 \mathrm{~nm}, \widetilde{v}=1 / \lambda=2.25482 \times 10^{6} \mathrm{~m}^{-1}=2.25482 \times 10^{4} \mathrm{~cm}^{-1}$.
For $\lambda=443.567 \mathrm{~nm}, \widetilde{v}=2.25445 \times 10^{4} \mathrm{~cm}^{-1} \quad$ Difference $=3.7 \mathrm{~cm}^{-1}$.
For $\lambda=443.495 \mathrm{~nm}, v=c / \lambda=6.75977 \times 10^{14} \mathrm{~Hz}$.
For $\lambda=443.567 \mathrm{~nm}, v=6.75867 \times 10^{14} \mathrm{~Hz} \quad$ Difference $=1.10 \times 10^{11} \mathrm{~Hz}$.
(b) $\Delta \lambda=\frac{\lambda}{10^{4}}=\frac{443.495}{10^{4}}=0.04 \mathrm{~nm}$
(c) Resolution $=n N=(2)\left(6.00 \mathrm{~cm} \times 2120 \mathrm{~cm}^{-1}\right)=2.54 \times 10^{4}$
(d) 200 lines $/ \mathrm{mm}=5 \mu \mathrm{~m} /$ line $=d \frac{\Delta \phi}{\Delta \lambda}=\frac{2}{d \cos \phi}=\frac{1}{(5 \mu \mathrm{~m}) \cos 10^{\circ}}$ $=0.406 \frac{\mathrm{radians}}{\mu \mathrm{m}}=23.3^{\circ} / \mu \mathrm{m}$
For $\Delta \lambda=0.072 \mathrm{~nm}, \Delta \phi=\left(23.3^{\circ} / \mu \mathrm{m}\right)\left(7.2 \times 10^{-5} \mu \mathrm{~m}\right)=1.7 \times 10^{-3}$ degrees
For 20th order diffraction, the dispersion will be 10 times greater, or 0.017°.
S20-8. True transmittance $=10^{-1.26}=0.055$. With 0.4% stray light, the apparent transmittance is $\frac{P+S}{P_{0}+S}=\frac{0.055+0.004}{1+0.004}=0.058_{8}$

The apparent absorbance is $-\log 0.058_{8}=1.23$.
S20-9.
(a) $\Delta= \pm 4 \mathrm{~cm}$
(b) Resolution $\approx 1 / \Delta=0.25 \mathrm{~cm}^{-1}$
(c) $\delta=1 /(2 \Delta v)=1 /\left(2 \cdot 4000 \mathrm{~cm}^{-1}\right)=1.25 \mu \mathrm{~m}$

S20-10. To increase the ratio from $3 / 1$ to $9 / 1$ (a factor of $9 / 3=3$) requires $3^{2}=9$ scans.

S20-11.

