Chapter 2

Differentiation

2.1 Tangent Lines and
Velocity

2. The tangent line is vertical and coin-
cides with the y-axis:

3. The tangent line is vertical and coin-
cides with the y-axis:
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4. The tangent line overlays the line:
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5. At x = 1 the slope of the tangent line
appears to be about —1.

6. The slope at x = 1 is approximately
—3.

7. C, B, A, D. At the point labeled C,
the slope is very steep and negative.
At point B, the slope is zero and at
point A, the slope is just more than
zero. The slope of the line tangent to
point D is large and positive.

8. In order of increasing slope: D (large
negative), C (small negative), B
(small positive), and A (large posi-
tive).

9. (a) Points (1,0) and (2,6).

Slope is % = 6.
(b) Points (2,6) and (3,24).
Slope is &1’6 = 18.

(c) Points (1.5,1.875) and (2, 6).
Slope is %&)875 = 8.25.
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10.

11.

Points (2,6) and (2.5,13.125).

Slope is &556 14.25.

Points (1.9,4.959) and (2,6).
Slope is &=2:939 4959 = 10.41.

Points (2, 6) and (2.1,7.161).
Slope is 7161 6 —11. 61

Slope seems to be approximately
11.

Points (1,v/2) and (2,/5).

Slope is ‘/; 1/_ ~ 0.5040.

Points (2,/5) and (3,/10).
Slope is Y20=V3 ~ (.9262.

3-2
Points (1.5,1.8028) and
(2,2.2361).

Slope is 2:2361-1.8028 2321 1158028 ~ 0.8666.

Points (2,2.2361) and (2.5, 2.2693).

Slope is 2:2093-2.2361 ~ () 9130.

2.5-2
Points (1.9,2.1471) and
(2,2.2361).

- a7l
Slope is % 0.8898.

Points (2,2.2361) and (2.1, 2.3259).

.o 2.3250-2.2361
Slope is =2=57===>= ~ (.8987.

Slope seems to be approximately
0.89.

Points (1,.54) and (2, —.65).

Slope is y —1.19.

Points (2, —.65) and (3, —.91).

Slope is M = —.26.
Points (1.5, —.628) and
(2, —.654).

Slope is Lé_ms) = —.05.

Points (2, —.65) and (2.5, 1.00).

Slope is Lg_'%) =3.3.

Points (1.9, —.89) and (2, —.65).
Slope is 5 ( 89) = 2.4.

Points (2, —.654) and (2.1, —.298).
Slope is M = 3.56.

12.

13.
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(g) Slope seems to be approximately
3.

(a) Points (1,—-2.1850) and
(2,1.1578).
Slope is —1'1578_2(_12'1850) ~ 3.3429.

(b) Points (2,1.1578) and (3, —0.2910).

Slope is w —1.4488.

(c) Points  (1.5,—0.1425)
(2,1.1578).
Slope is
—2.6007.

and

1.1578—(—0.1425)
2-1.5

(d) Points (2,1.1578) and (2.5, —3.3805).

—3.3805—1. 1578

051 —9.0767.

Slope is
(e) Points and
(2,1.1578).

. L1578—0.7736 ~_
Slope is =755 ~ 3.8427.

(1.9,0.7736)

(f) Points (2,1.1578) and (2.1,1.7778).
Slope is LHEELIOTE ~ 6.1996.
(g) Slope seems to be approximately

4.68.

14. All the lines are very close to the tan-

gent line:
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15. The sequence of graphs should look
like:

129

107

The third secant line is indistinguish-
able from the tangent line.

16. The sequence of graphs should look

17.
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like:

604
40

20

-201

607
404

20

-20
607
40-

20

The third secant line is indistinguish-
able from the tangent line.

Slope is

L F ) — F()

h—0 h )

 lim (1+h)?=2—-(-1)
h—0 ) 2h

im T mno—o.
h—0 h—0

Tangent line is y — (—1) = 2(z —1) or
y =2z —3.
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18.

19.

Slope is
0+ h) ~ £(0)
h—0 ) h

. h
—m T =0

Tangent line is y = —2.

vvvvvvvvvvvvv

Slope is

(2R — f(-2)

h—0 h )

— im (=2+h)* —=3(—2+h) — (10)
h—0 h
. 4—4h+h?2+6—-3h—10

= lim
h—0 9

S s LU N Y S
h—0 h h—0

Tangent line is y — 10

—T7(x +2) or y = =Tz — 4.
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20. Slope is

21.

lim

fA+n) - f(1)

h—0

= lim
h—0

= lim
h—0

h
(143h+3h2+h%)+ (1+h)—2

4h + 3h% + R?
h

= lim 4+ 3h + * = 4.
Tangent line is y = 4(x — 1) + 2.

30

Slope is

L PR = F(1)

= lim
h—0

Tangent lineis y — 1 = —
y=—5+3

h
2 2
A+h)+1 ~ 141

-1 -1

2+h 2

s(x—1) or
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22. Slope is
LSO+ h) — f(0)
h—0 L h

— —0
= lim *=2
h—0
=T
Tangent line is y = —x.

23. Slope is
(2 = (=)
h—0 h
_ lim (—=24+h)+3—-1

h—0 h

. VvVh+1-—1
= lim

h—0 h

vh+1—-1 +vh+1+1

il h '\/h+1+1
B (h+1)—

~ 0 hvVh+1+ 1)
1 1

T Vhti+l 2
Tangent line is y — 1
Sz + 2 o y =

CHAPTER 2 DIFFERENTIATION

24. Slope is
L FE ) — £ ()
h—0 h
2 _
. VI 42k +h2) +1—+/2
h—0 h
We then multiply by

(V2F 2k + hZ + V/2)
(V2 +2h + h2 +/2)

to get
i (24 2h+h*) =2
=0 h(v/2 + 2k + B2 + /2)
— lim h(2+h)
=0 h(y/2 +221r%h2 +2)
h—>0 (\/2\—/k_2h+h2+\/_)
2 2

a2 2

Tangent line is y =

Iﬂ

Z(x—1)+v2.

vvvvvvvvvvvvvvvvvvvvv

25. Numerical evidence suggests that
iy LR — f(1)
h—0+ h
while

=1

N
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26.

27.

28.

29.

30.

31.

lim fA+h) -
h—0— h

w_

Since these are not equal, there is no
tangent line. A graph makes it appar-
ent that this function has a “corner”
at x = 1.

Tangent line does not exist at x = 1
because the function is not defined
there.

Numerical evidence suggests that

LS040 = 1(0)

h—0+ h

L fO0 )~ f(0)
}6%0* h

Since the slope of the tangent line
from the left equals that from the
right and the function appears to be
continuous in the graph, we conjec-
ture that the tangent line exists and
has slope 0.

Tangent line does not exist at x = 1
because the function has a sharp cor-
ner there, causing the limit of slopes
to fail to exist.

Looking at the graph, we see that
there is a jump discontinuity at a =
0. Thus there cannot be a tangent
line, as the tangent line from the left
would be different from the tangent
line from the right.

Tangent line does not exist at x = 0
because the function is not defined
there. Tangent line would exist with
slope —2 if the function were defined
to be 0 at z = 0.

(a) Points (0,10) and (2,74). Aver-

ot 640
age velocity is =~ = 32.

(b) Second point (1,26).
velocity is 420 = 48.

Average

32.

33.

34.
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(c) Second point (1.9,67.76). Aver-
age velocity is @ = 62.4.

(d) Second point (1.99,73.3616).

Average velocity is % —
63.84.
(e) The instantaneous  velocity

seems to be approaching 64.

(a) Points (0,0) and (2 26). Aver-

age velocity is 0 =13.

(b) Second point (1 4). Average ve-
locity is 26 4 = 22.

(¢) Second p01nt (1.9,22.477). Av-
erage velocity is 2822477

2-1.9
35.23.
(d) Second point (1.99,25.6318).

Average velocity is 26200318

2-1.99
36.8203.

(e) The instantaneous  velocity
seems to be approaching 37.

(a) Points (0,0) and (2,1/20). Aver-
age velocity is Y20=0 = 2.236068,

(b) Second point (1 3) Average ve-
locity is Y22=3 = 1.472136.

(¢) Second point (1.9,+/18.81). Av-

erage velocity is V20_VIBBL  _

2-1.9
1.3508627.
(d) Second point (1.99,+/19.8801).

oo V/20—/19.8801
Average velocity is Y=o =
1.3425375.

(e) One might conjecture that these
numbers are approaching 1.34.

. . . 6 ~

The exact limit is 7=

1.341641.
(a) Points (0,0) and (2,47.9426).

Average velocity is 47:9426-0 _

2-0
23.9713.

(b) Second point (1,24.7404). Av-
erage velocity is W _
23.2022.
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36.

(c) Second point (1.9,45.7338). Av-
erage velocity is 47.942267# _
22.0871.

(d) Second point
Average velocity is
21.9545.

(e) The instantaneous  velocity
seems to be decreasing to
slightly less than 22.

(1.99, 47.7230).

47.9426—47.7230 __
2—-1.99 -

(a) Velocity at time t =1 is
o PR — ()

h—0 h
—16(1 + h)* 45— (—11)

= lim
h—0 h

. =16 —32h —16A%+5+ 11

- pm

h
. —32h — 16h*
=lim ———
h—0 h
= lim —32 — 16h = —32.
h—0
(b) Velocity at time t = 2 is
L T@ R~ ()
h—0 h
—16(4 + 4h + h?*) +5+59

= lim
h—0

h
—64 — 64h — 16h> + 64

= lim
h—0 h
= lim —64 — 16h = —64.

h—0

(a) Velocity at time ¢ = 0 is
fO+h) - f(0)

i h
. Vh+16—4 Vh+ 16+ 4
= h Vh+16+4
iy (B 16) —16

h—0 h(v/h 4+ 16 + 4)

1
= lim —— =1/8.
h—0+/h +16 44 /
(b) Velocity at time t = 2 is
TR~ )
h—0 h
Multiplying by

Vh + 18 +4/18
Vh+ 18 + /18

gives

37.

38.

39.
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iy (0 +18) 18
h—=0 h(v/h + 18 4+ 1/18)
1 1

= lim = .
=0 \/h+ 18 +/18 218

The slope of the tangent line at p = 1
is approximately

—20 -0
10
2-0

which means that at p = 1, the freez-
ing temperature of water decreases by
10 degrees Celsius per 1 atm increase
in pressure. The slope of the tangent
line at p = 3 is approximately

—11 — (—20)

=45
4 -2

which means that at p = 3, the freez-
ing temperature of water increases by
4.5 degrees Celsius per 1 atm increase
in pressure.

The slope of the tangent line at v =
50 is approximately

47-28

60 —40

This means that at an initial speed of
50 mph, the range of the soccer kick
increases by .95 yards per 1 mph in-
crease in initial speed.

The hiker reached the top at the high-
est point on the graph (about 1.75
hours). The hiker was going the
fastest on the way up at this point.
The hiker was going the fastest on the
way down at the point where the tan-
gent line has the least (i.e. most neg-
ative) slope, at about 3 hours, at the
end of the hike. Where the graph is
level, the hiker was either resting, or
walking on flat ground.
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40.

41.

42.

The tank is the fullest at the first
spike (at around 8am). The tank is
the emptiest just before this at the
lowest dip (around 7am). The tank is
filling up the fastest where the graph
has the steepest positive slope (in be-
tween 7 and 8am). The tank is emp-
tying the fastest just after 8am where
the graph has the steepest negative
slope. The level portions most likely
represent night, when water usage is
at a minimum.

A possible graph of the temperature
with respect to time:
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Graph of the rate of change of the
temperature:

“““““““““““““““

Possible graph of bungee-jumper’s
height:

43.

101

50

vvvvvvvvvvvvvvvvvvvvv

A graph of the bungee-jumper’s ve-
locity:

50-
7 X
o ‘?Vm“\sm‘%o
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(a) To say that

f4) - f(2)

= 21,034
2 )

per year is to say that the aver-
age rate of change in the bank
balance between Jan. 1, 2002
and Jan. 1, 2004 was 21,034 ($

per year).
(b) To say that

2[f(4) — f(3.5)] = 25,036

(note that 2[f(4) — f(3.5)] =
%) per year is to say that
the average rate of change be-
tween July 1, 2003 and Jan. 1,

2004 was 25,036 ($ per year).
(c) To say that

i LA+ = S0
h—0 h

= $30,000
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45.

46.

is to say that the instantaneous
rate of change in the balance on
Jan. 1, 2004 was 30,000 ($ per
year).

(a) w = —2103 represents

the average rate of depreciation
between 38 and 40 thousand
miles.

(b) w = —2040 represents

the average rate of depreciation
between 39 and 40 thousand
miles.

(c) lllin%w = —2000 repre-
sents the instantaneous rate of

depreciation in the value of the
car when it has 40 thousand
miles.

We are given 0(t) = 0.4t>. We are ad-
vised that 6 is measured in radians,
and that t is time. Let us assume that
t is measured in seconds.

Three rotations corresponds to 6 =
6m. Proceeding, if 6(t) = 67 then
0.4t? = 67 and solving for ¢ yields
t = /157 ~ 6.865 (seconds).

At that exact moment of time (call it
a) , the exact angular velocity is

0(a + h) — 0(a)

lim
h—0 h

. A(V15m + h)? — 67
= lim

h—0 h
i A4(157 + 2h/157 + h?) — 67)
=l h

. .8h\/157 + .4h?
= lim

h—0 h

= }1}11(1).8\/1571’ + 4h = &V1bm =
5.492

and the units would be radians per
second.

First find the time corresponding to
two rotations: 4m = 0.4t? = t ~

47.

48.
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5.6050.
Now the angular velocity is

0(5.6 + 1) — 0(5.6)

lim
h—0 h
0.4(5.6 + h)? — 0.4(5.6)>
= lim
h—0 h,2
4.4 )
— lim 4.48h +0.4h7 _ 448,
h—0 h

The third rotation is helpful because
the angular velocity increases.

f(s) = f(r)
s—r
as* +bs +c— (ar? + br +c)

Vavg =

S—7T

_ a(s> —1?) +b(s —7r)
_ a(s+ r)?s_—rr) +b(s—1)

=a(s+r)+b

Let v(r) be the velocity at ¢t = r. We
have

o Sl h) = fr)
o(r) = lim h
. a(r® +2rh + h?) + bh — ar?
= lim
h—0 h
. h(2ar +ah +b)
= lim

h—0 h
:}Lin52ar+ah+b: 2ar + b.

So v(r) = 2ar + b. The same argu-
ment shows that v(s) = 2as + b.

Finally,
v(r)+v(s)  (2ar +0b)+ (2as +b)
2a(s 3 1) + 2 2

a(s +27’) +2b 05 +7) + b= v,

f(t) =3 —t works with r =0, s = 2.
The average velocity between r and s

is % = 3. The instantaneous veloc-
ity at r is
3 _ _
lim(o+h) (0+h) 0:0’
h—0 h,

and the instantaneous velocity at s is
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49.

50.

51.

(2+h)*—(24+h)—6

lim
h—0 h

. 84 12h+6h2+h*—2—h—6
= lim

h—0 h
:}Lin%)11+6h+h2:11,

so the average between the instanta-
neous velocities is 5.5.

Let x = h+a. Then h = z — a, and
clearly

flat+h)—fla) _ flz) — fla)

h T —a

It is also clear that x — a if and only
if h — 0. Therefore if one of the two
limits exists, then so does the other
and

lim
h—0

flath) - fla)
h r—a

r—a

For exercise 17,

flz) = f(1)

r—1

(v —2) = (=1)
x—1

(x —1)(z+1)
r—1

lim

r—1

= lim

r—1

= lim =2

r—1

For exercise 19,

@) -5
x+2
(z? — 3z) — 10

T+ 2
— lim (x —5)(z+2) _ 7
r——2 $+2

r——2

First, compute the slope of the tan-
gent line. Using the result of #49, it
is convenient to assume x is near but
not exactly 1/2; and write

o f@ =1/ (1)
e—1/2  x — (1/2) x—(1/2)
e (12)  (1/2)]

2—1/2 x—(1/2)

f(2) = f(a)

52.
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— i 1/2) =1
wg}}zrﬁ(/)

Next, we quickly write the equation of
the tangent line in point-slope form:

y— (1/4) = 1z - (1/2)) or y =
x—(1/4).

The location of the tree is the point
(z,y) = (1,3/4) and this point is in-
deed on the tangent line. The tree
will be hit if the car gets that far (that
being something we have no way of
knowing).

It is clear from the graph that no
other tangent line will pass through
the point (1, %) No other lines
through this point will be tangent to
the curve y = 2.

2.2 The Derivative

1.

Using (2.1):
:11m3(1+h)+1_(4)
h—0 b
= limS— =lim3=3
h—0 h h—0
Using (2.2):
i £0) = £(1)
b—1 b — 1
:hm3b+1—(3+1)
b—1 b—1
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g 3b—3
T -1
:hmM =lim3=3
b—1 — b—1
. Using (2.1):

iy i J (A +R) — f(1)
FQ) = lim h

1 2+1-4
:limg( +h)? +

h—0 h

. 6h + 3h?

=lim ——
h—0 h

= lim 6 4+ 3h = 6.
h—0
Using (2.2):

= 1im13(a: +1) =6.

. Using (2.1): Since

JA+h)—=f(1) 31+h)+1-2

h N h

_ VA+3h—-2 VA+3h+2
h \/4+3h+2h

3

4+ 3h—4
C W(VAF3h+2)  h(VA+3h+2)
3

= m, we have:

h—0 h

3
= lim —————
h—0 \/43+ 30+ 2

T /A3 +2 4
Using (2.2): Since
f(0) = f(1)
b—1
V3 +1-2
- b—1
(V3 +r1—2) (V3T 1+2)
(b—1)(v3b+1+2)

CHAPTER 2 DIFFERENTIATION

(3b+1) — 4
b= )31 112
3(b— 1)
(b 1§\/3b+1+2
T VBh 142
00—y 201D

, we have:

4. Using (2.1):

h—0

—3 1
. (@th)+1
= lim ———
h—0 h
3 3+h

— iy b 3+h
h—0 h
—h
= lim 3t~
h—0 h

hlg(l)?ﬂrh

B 1
3
Using (2.2):

F(2) = lim x;

h—r% h
x4+ h)*+1—(3(x)*+1)
= 111m
h—0 h
. 32+ 6xh+3h%+1— (322 + 1)
= lim
h—0 ) h
i P3N 6 4 3h = 6
h—0 h h—0
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e+ h) - flx) : 3
6. f'(z)=1 = lim
f(@) o h b=z (v/3b+ 1+ +/3x +1)
_1im(a:+h)2—2(:c+h)+1—f(:c) B 3
he0 h C2VBr +1
— lim 2xh + h? — 2h
T ho0 h / BT f(l‘—i—h)—f(l‘)
(22 4+ h—2) 10. fi(z) = lim h
= lm ————— =2z -2. o 2@ ) 43 (204 3)
h—0
b) —
7. limM :lim%:Z
b—x b3— T, h—0 h
Qi bHL w4 B
= 1. fim LW =@
3(z+1)—3(b+1) b=z  b—x
— iy _CFDGEHD _y B +2b—1—(23+22—1)
b—z b—=x - blilglg b—=x
= lim —3(b—2) _ b — a3 +2b—2x
b—z (b+ 1)(z+1)(b— 2) e b—ux
= lim —3 __ 3 i (b—z)(b* + bx + 2% + 2)
boz b+ D)z +1)  (z+1)2 e b—
= lim b* + bz + 2% + 2
. flx) = lim =3z°+2
2 2
oy 2@rh)—1 " 2a—1 . Jfl@+h) = fx)
= }llli% 5 12. f'(z) = }ILILI(I] -
2(2z—1)—2(2z+2h—1
ey o @) 2@ b1 f()
= lim = Jm
h—0 h h=0 h
__dh = lim 42° + 62> h+4zh®+ h® — 4z —2h
— i Zzt2h@2—1) h=0
h—0 h = 4x° — 4x.
, —4
- ,llli% (22 + 2h — 1)(2z — 1) 13. The function has negative slope for
—4 x < 0, positive slope for x > 0, and
- (20 —1)2 zero slope at x = 0. Its slope function
(derivative) can only be (c).
b) —
o 1 S0~ 1)

bor  b—1 14. (e). The graph (e) is zero in two
V3b+1—3z+1 places and negative in between. The
graph of exercise 18 is flat in two
places, and decreasing between.

= lim
b—x b—=x

Multiplying by

V3b+1++3x+1 15. Here, moving from left to right, the
V3b+ 1431 + 1 slope goes from negative to positive
: to negative to positive. Its slope func-

BIVES tion (derivative) can only be (a) .

- (3b+1) — (3z+1)

b=z (b—x)(v/3b+ 1+ 3z +1) 16. (d). Graph is decreasing everywhere

_ lim 3(b— 1) so the derivative will be negative ev-

b=z (b—x)(v/3b+ 1+ 3z + 1) erywhere.
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17.

18.

19.

20.

21.

The graph is increasing to the left of
the jump and decreasing to the right.
The derivative of this function must
be (b) which is postive to the left of
the jump and negative to the right.

(f). The graph (f) is zero in two places
and positive in between. The graph of
exercise 22 is flat in two places, and
increasing between.

The derivative should look like:

107

w
1

The derivative should look like:

The derivative should look like:

107
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22. The derivative should look like:

23. One possible graph of f(z):

107
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24. One possible graph of f(z):
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25. f(z) is not differentiable at x = 0
or x = 2. The graph looks like:
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26. f(x) is not differentiable at x
0 or x = =1

107

100000

50000]

We give three
different graphs of different regions
because of the differences in scale:

28.

29.

30.

31.

107

If p>1,thenp—12>0,so f'(0) =0.
Also, if p = 0, then f(x) = 1, so
f'(0) = 0. However, if p < 1 but
p # 0, then
p
fi) =L
where 1 —p > 0, and so f'(0) does not
exist.

Let w = ch so h = %. Then we have

fla+ch) — f(a)

lim

h—0 h

et~ f()
=

_ iy L0 = 100

~ J'(a)-
_ f(@)f'(a)

a

We know th?‘% t)he 1}1?61)3
x J—
"(0) = lim —————~=
f ( ) mlir(l] x—0 z—0 X
exists. Since f(x) < 0 for all x we

()

= lim /()

know that > 0 for all z < 0 and

(=)

——= < 0for all x > 0. The only way

x
for this to be true and for lir% M to
T— T

exist is if fa)
/ R T x _
110) = fim T 0
We estimate the derivative at z = 60
as follows:
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32.

33.

39—-24 1.5

—— = — =10.0375

80 — 40 40
For every increase of 1 revolution per
second of topspin, there is an increase
of 0.0375° in margin of error.

We estimate the derivative at £ = 8.5
as follows:

1.04 — .58

= 0.46
9-38

For every increase of 1 foot in height
of serving point, there is an increase
of 0.46° in margin of error.

Compute average velocities:

Time Interval | Average Velocity
(1.7, 2.0) 9.0
(1.8, 2.0) 9.5
(1.9, 2.0) 10.0
(2.0, 2.1) 10.0
(2.0, 2.2) 95
(2.0, 2.3) 9.0

Our best estimate of the velocity at

t=21s 10.

34. Compute average velocities:

35.

Time Interval | Average Velocity
(L.7,2) S =
(1.8,2) 8.5
(1.9,2) 9
(2,2.1) 8
(2,2.2) 8
(2,2.3) 7.67

A velocity of between 8 and 9 seems
to be a good guess.

We compile the rate of change in Ton-
MPG over each of the four two-year
intervals for which data is given:

36.

37.

CHAPTER 2 DIFFERENTIATION

intervals | rate of change
(1992,1994) | &40 = 4
(1994,1996) A4
(1996,1998) 4
(1998,2000) 2

These rates of change are measured in
Ton-MPG per year. Either the first or
second (they happen to agree) could
be used as an estimate for the one-
year interval “1994” while only the
last is a promising estimate for the
one-year interval “2000”. The mere
fact that all these numbers are posi-
tive suggests that efficiency is improv-
ing, but the last number being smaller
seems to suggest that the rate of im-
provement is slipping.

The average rate of change from 1992
to 1994 is 0.05, and from 1994 to 1996
is 0.1, so a good estimate of the rate
of change in 1994 is 0.75. The average
rate of change from 1998 to 2000 is -
0.2, and this is a good estimate for the
rate of change in 2000. Comparing to
exercise 35, we see that the MPG per
ton increased, but the actual MPG for
vehicles decreased. The weight of ve-
hicles must have increased, and if the
weight remained constant then the ac-
tual MPG would have increased.

We prepare a table of values for the
function f(z) = z* (when z is near 1).
Difference quotients based at x = 1
are then compiled in the last column.

x y=2a" i;_i
1.1000000 | 1.1105342 | 1.1053424
1.0100000 | 1.0101005 | 1.0100503
1.0010000 | 1.0010010 | 1.0010005
1.0001000 | 1.0001000 | 1.0001000
1.0000100 | 1.0000100 | 1.0000100
1.0000010 | 1.0000010 | 1.0000010
1.0000001 | 1.0000001 | 1.0000001
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38.

39.

40.

41.

The evidence of this table strongly
suggests that the difference quo-
tients (essentially indistinguishable
from the values themselves) are head-
ing toward 1. If true, this would mean
that f'(1) = 1.

Numerically estimate
f(’]T) msin:r -1

lim fw) - = lim

T—T Tr — T T—T Xr — T

Computing this expression for values

of x close to 7, we see the limit is ap-
proximately 1.

The left-hand derivative is

. J(h) = f(0)
D_ = lim —————~=
= on i1
— fim 2T
h—0— h
The right-hand derivative is
. f(h) = f(0)
D = lim —————~
+/(0) et L h
~ im 3h+1-1 _5
h—0+ h
The left-hand d(}f(i}vlz)xtive ia )
D_f(0)= lim 2\
1(0) hi%lf ) h
h—0
= I =0
hi%lf h
The right-hand derivative is
_ o f(h) = f(0)
D1 (0) = hli>r(r)1+ ; h
. h?=0
n hlir(r]1+ ho 0
(h) — f(0)
D =1
+/(0) B0t ) h()
. k(h) — k(0 ,
s f(h)h f( )_k(O)
— f(0
D =1
1(0) hi%lf . h()
oo gth)—g0)
= lim 9'(0)

42.

43.

44.

45.
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If f(z) has a jump discontinuity at
x = 0, it would be because its left
limit at x = 0, namely ¢(0), is not
the same as the value which is k(0).
In that case there could be no left
derivative (by Theorem 2.1) and one
would have to reject the statement

D_f(0) = ¢'(0).

The derivative f'(0) exists if and only
if the limit limw exists, and

h—0

this limit exists if and only if the one-
sided limits exist and are equal. But
the one-sided limits are the left- and
right-hand derivatives.

If f/(x) > 0 for all x, then the tan-
gent lines all have positive slope, so
the function is always sloping up.

If f/(z) < 0 for all x, then the tan-
gent lines all have negative slope, so
the function is always sloping down to
the right.

From the graph, we see that f(z) ap-
pears continuous at x = 0, where it
has both lzmit and value zero. How-
ever, when we try to compute its
derivative at x = 0, we come to the
difference quotient

JO+R) ~ F0) _ f() 1

h T R EE
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46.

47.

Clearly this expression has no finite
limit as h approaches zero. The num-
bers get large without bound. We do
sometimes say that the vertical line

= 0 is the tangent line, but as a
line it has no slope (just as the func-
tion has no derivative).

lim f(z) = lim 0=0, and
z—0~ z—0~
lim f(z) = lim 2z =0,

This equals f(0), so the function is
continuous.

lim (0+h) 1O _ = lim 9:0,
h—0— h—0-
lim <O+h> f()—lim %:2
h—0t h—0—

These one 51ded derivatives are not
equal, so the function is not differen-
tiable at z = 0.

Graphically, we can see that the func-
tion is continuous, but has a sharp
corner at x = 0 so is not differentiable
there.

Let f(x) = —1—2?; then for all z, we
have f(z) < z. But at x = —1, we
1

find f(— )_: —2 and
f/(_l) _ 1_>0 f(_l + h}z B f(_l)
o Sl LR ()
h—0 h

48.

49.

50.

51.

52.

53.
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N h—0 h
So, f'(x) is not always less than 1.

This is not always true. For example,
the function f(z) = —a? + x satisfies
the hypotheses, but f'(z) > 1 for all
x < 0, as the following graph shows.

(a) meters per second

(b) items per dollar

(a) (t) will represent the rate of
change in amount of chemical,
and will be measured in grams
per minute.

(b) p'(x) will represent the rate of
change of mass, and will be mea-
sured in kg per meter.

If f'(t) < 0, the function f(t) is nega-
tively sloped and decreasing, meaning
the stock is losing value with the pass-
ing of time. This may be the basis for
selling the stock if the current trend
is expected to be a long term one.

You should buy the stock with value
g(t). It is cheaper because f(t) >
g(t), and growing faster because
f'(t) < ¢'(t) (or possibly declining
more slowly).

The following sketches are consistent
with the hypotheses of infection rate
rising, peaking, and returning to zero.
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We started with the derivative I'(¢)
(infection rate) and had to think
backwards to construct the function
I(t). One can see in I(t) the slope in-
creasing up to the time of peak infec-
tion rate, thereafter the slope decreas-
ing but not the values. They merely
level off.

55. Because the curve appears to be
bending upward, the slopes of the
secant lines (based at z = 1 and with
upper endpoint beyond 1) will in-
crease with the upper endpoint. This
has also the effect that any one of
these slopes is greater than the ac-

° i tual derivative. Therefore

~ iy < 10D =) F@) )
5 1

As to where f(1) fits in this list, it

] seems necessary to read the graph and

come up with estimates of f(1) about

o9 4, and f(2) about 7. That would put

the third number in the above list at

: : about 3, comfortably less than f(1).

56. Note that f(0)— f(—1) is the slope of

the secant line from x = -1 tox =0

54. One possible graph of the population (about —1), and that W is

P(t): the slope of the secant line from z =

—0.5to z = 0 (about —0.5). f(0) =3
and f/(0) =0

] In increasing order, we have f(0) —
f(=1), LOLEOD 0, and £(0).
] 57. This is a tricky one. It happens that
10004 for the function f(z) = z? — x, the
] value at z = 1 is zero (f(1) = 0)!
o AT T e e e T Because of this fact,

Graph of P'(t): (1+h)2h_(1+h) _ f(l"‘h})l_f(l)
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58.

59.

60.

61.

63.

and the answer should be:
flx)=2>—zanda=1.

VA4 -2
%ing)% is the derivative of

the function

f(z) =z at x = 4.

1) _ (1
lim Mh(?) would be f’(a) for

h—0

f(x)zianda:Z

h—1)2—-1
lim L is the derivative of
h—0 h

the function

flz) =2%at o = —1.

One possible such graph:

A

We have:

100 0<t<20
f(t) = {100+ 10(t —20) 20 <t <80
700 + 8(t —80) 80 < t < 00

64.

1.

2.

3.

CHAPTER 2 DIFFERENTIATION

This is another example of a piece-
wise linear function (this one is con-
tinuous), and although not differen-
tiable at the transition times t = 20
or t = 80, elsewhere we have

0 O<t<?20
f(t)=<¢10 20 <t <80
8 80<t< o

We estimate f'(1) as follows:

iy L 913

)~ S = 2
For every increase of one month
(which corresponds to being one
month younger than your comrades),
the number of players in the English
Premier League decreases by 2. This
suggests that it if being an English
Premier League soccer player is your
goal, that you have a better chance at
it if you are older.

2.3 Computation of

Derivatives:
Power Rule

Fa) = )~ (20) + (1)

d
=32% - 2— 0
x dx(:t)—l—

= 32% — 2(1)
=322 -2

f'(z) = 92% — 152* + 8z — 4

£1(6) = 53 - 5 (20)
d 3 d 1/2
BE(t)z(d—ij (t/g
=3(3%) —2( 5171
_ogp o L

Vit



4. f(s) =5s"? —45* + 3, s0

f'(s) = 25_1/2 — 8s

)

= 2—\/5 — 8s

5. £0) = 70 (2) = 80+ 20

d. . d

=32 ()~ 82 () +0

—3(~a?) —s(])

__3 _g

=10— (27'?) — 2—(=)
1
=10 —E:c*?’/? —2(1)
= 53732 2
-5
- -2
T/ T

8. h(z) =122 — 2> — 3272, s0
3
W(x) =12 — 2z + 5:{:—3/2

3
=12 -2z +
N
9. f'(s) = d% (253/2) — d% (357/%)
ol sy o d oy
_2d3 (8 ) 3ds (S )

1
=2 (251/2) -3 (—55_4/3>

10. f/(t) = 3mt™ 1 — 2.6¢"3

11. f'(z) = % (2¥/x) + %(3)

2.8 COMPUTATION OF DERIVATIVES: THE POWER RULE

13.

14.

15.

16.

17.

18.

113

o4 s
—de(x )+O

1 2
— 2 (§x2/3) — §x72/3

b
3V

. f(x) =4z — 32%3, s0

2
\?/E
f(z) = 2(32% — \/7) = 3% — 23/% s0

fllx)=4—22"Y3 =4 —

f@) =376 - - ()
= 3(32%) — (gxlﬂ)
= 92% — g\/E

fx) =423 — 21?4 3272 50
3
- 5x71/2 o 51,73/2

d
f(z) = %(a:4 +32% — 2) = 42 + 62

f(z) = di(élx?’ +62) = 122° + 6
x

f(z) =2° -z = 2% — 2% s0
%:%(ﬁ_ﬂ/z) :6x5—%x1/2
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19.

20.

21.

22,

23.

2f  d

— (6 5 1 —1/2

dz? ~ dx 2
1 1
_ a4 L/ 13
30z 5 ( 2:c )
1
=30z + Zm_?’ﬂ

=30z +

4£E\/_
f(z) =22 — 32712 50

T
= 24a? — —g7
da? Ty

4
f(t) =4t — 12+ i 447 — 124 4t 2

so f'(t) = jt(4t2—12+4t %)

=8t — 0+ 4(—2t7?)
=8t* — 8t~°
d
"(t) = —(8t — 8t
f'(@) dt( )
=8 —8(—3t™%)
=8+ 24t *
d
() £(8+24t‘4) = 0++24(—4t75)
= —96t° _t—26
f'(x) = 42° + 62
f"(z) =122 + 6
1" (x) = 24z
fW(z) =24
f'(x) = 102° — 122° 42
f"(z) = 902° — 362°
f"(x) =7202" — 72x
() = 504025 — 72
O (z) = 302402°

2> —x+1
fla) = =
= 32 _ 312 +:1:*1/2 SO
d
R ON V- N V) S Y
f(x) o (z a'? 4+ 7 1?)

3 1 1
_2y2 2 -12 _ 1,-3/2

2 2 2
f'(z) =

24.

25.

26.

27.

28.

29.

30.
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d 3 12 _ 1x—1/2_1x—3/2
dr 2 2

_ §x_1/2+ 1 32 4 3x_5/2

4 1" 4
1"(z) =
d (3 1o, 1 30,3 5p
i (4:L’ + 4:c + 495
3 3 15
_ _gx—:a/z _ gx—5/2 _ gx—m
3P+ +5)

BN

ft) =3 4152 —t —1/2

1

f'(t) =3t + gt3/2 —1- 5zf—1/2

i 1
f(t) = 6t + Z5t1/2 - Zt_?’/Q

15, 3

" -6 -1/2 _t75/2
o
@) (4) — _224-3/2 ~7/2
AU 16 T
s(t) = —16t* + 40t + 10
v(t) = §'(t) = =32t + 40
a(t) ='(t) = s"(t) = —32
s(t) = 1263 — 6t — 1
v(t) = §'(t) = 36t> — 6
a(t) =s"(t) =72t
s(t) = Vit + 2t = t1/2 4 242
1
o(t) = §'(t) = §t_1/2 + 4t
1

a(t) =v'(t) = §"(t) = —Zt_3/2 +4

s(t) =10 —10t7*
v(t) = §'(t) = 10t 2
a(t) = s"(t) = —20t 3

v(t) = —32t 4 40, v(1) = 8, going up.
a(t) = =32, a(l) = —32, speed de-
creasing.

v(t) = —32t + 40, v(2) = —24, going
down.
a(t) = =32, a(2) = —32, speed in-

creasing.
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31.

32.

33.

34.

35.

36.

37.

v(t) = 20t — 24, v(2) = 16, going up.
a(t) = 20, a(l) = 20, speed increas-
ing.

v(t) = 20t — 24, v(1) = —4, going
down.

a(t) = 20, a(1) = 20, speed decreas-
ing.

f@)=4yr -2z, a=4

f(4) = 42{1— 2(4) =0

f(z) = . (4351/2 — 2x)
:2:5—1/2—2:%—2

ff4=1-2=-1
The equation of the tangent line is
y=—-1l(x—-4)+0o0ry=—z+4.

F(2) =1.
f(w) =20 -2,
7(2) =2.

Line through (2,1) with slope 2 is
y=2(x—2)+1.

fl@)=2%=2,a=2, f(2)=2
f'(x) =2

f'(2) =4

The equation of the tangent line is
y=4(x —2)+2o0ry=4x —6.

Tangent line to a line is always the
same line, y = 3x + 4.

flz)=2-3z+1

f(z) =32* -3

The tangent line to y = f(z) is hori-
zontal when f'(z) = 0:

312 -3=0

= 3?-1)=0

= 3a+1(@—-1)=0

= r=—-lorz=1.

38.

39.

107

2 3

The graph shows that the first is a rel-
ative maximum, the second is a rela-
tive minimum.

Tangent line is horizontal where
f'(x)=0.

f(x) =42 -4z = dz(z—1)(2+1) =
0 when z = £1 or 0.

L e e e e e AL e e e e
-1.5 -1 -0.5 (o] 0.5 1 1.5

The graph shows that the first and
last are relative minimums, while the

middle (z = 0) is a relative maxi-
mum.
fla) =2
2 2
/ _Zz -1/3 - _Z
Jw) =32 33z

The slope of the tangent line to y =
f(z) does not exist where the deriva-
tive is undefined, which is only when
xz=0.
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40.

41.

In this case, because the function is
continuous, we might say that the
tangent line is the vertical line z = 0.
The feature at x = 0 is sometimes
known as a cusp.

f'x) =

at z = 0.

%x_2/3 = —— is undefined
xT

The graphical significance of this
point is that there is a vertical tan-
gent here.

Asregards the (a) function, its deriva-
tive would be negative for all nega-
tive = and positive for all positive x.
Since no such function appears among
the pictures, this (a) function has to
be the one whose derivative is absent
from the list. There being no f” in
the list, (a) has to be f”.

This same (a) function is negative for
a certain interval of the form (—a,a),
and the (c) function is decreasing on a
similar type of interval. Thus the (a)
function (f”) is apparently the deriva-

42.

43.

44.

45.

CHAPTER 2 DIFFERENTIATION

tive of the (c) function. It follows that
(c) must be f’.

This leaves (b) for f itself, and our
identifications are consistent in every
respect.

Curve (b) is the function f(x), curve
(a) is the derivative f'(x), and curve
(c) is the second derivative f”(z).

fla) = VE =2
fa) = 5o

f”(]?) _ % _; T —3/2

/// __1 _° —5/2
7 (; ) 5) )

f(n)( )= (-1 2:1’ (2n—1)/2

in which II,, is the product of the first
n — 1 odd integers (starting from 1
and ending at 2n — 3). Recall that
the product of all the whole numbers
from 1 to n is denoted by n!. If one
were to multiply II, by product of
the n — 1 even numbers (from 2 to
2n — 2), one would get (2n — 2)! (in
the numerator). Of course, one would
have to do the same to the denomi-
nator, but this product of the new
numbers could be written in the form
2""1(p — 1)! A final form for an an-
swer could be

SO (@) = (1) a2,
) = -2
) = 6!
f’"( )= —24x_5 The pattern is
(n)

(z) = (=

flx)=az*+bx+c= f(0) =
f'(x) =2ax+b= f'(0)=0
f'(x) =2a= f"(0) =2a
Given f”(0) = 3, we learn 2a = 3, or
a = 3/2. Given f'(0) = 2 we learn

D™(n+ ko2,
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46.

47.

48.

2 = b, and given f(0) = —2, we learn
¢ = —2. In the end
f(z) = az® + br + ¢ = 22% + 20 — 2.

f(x)=ar®+br+c fO)=0=c=
0.
f'(z) =2ax+b. f(0)=5=0b=

f'(@)=2a. f'(0)=1=a=3.
So f(z) = 32* + 5.
Fory— ~. we have dd = —x%. Thus,

the slope of the tangent line at z = a

1
is —=.

When a = 1, the slope of the tangent
line at (1,1) is —1, and the equation
of the tangent line is y = —x + 2.
The tangent line intersects the axes
at (0,2) and (2,0). Thus, the area of

the triangle is 1(2)(2) = 2.

When a = 2, the slope of the tangent
line at (2, 2) is —=, and the equa‘mon
of the tangent lme isy = ——x + 1.
The tangent line intersects the axes
at (0,1) and (4,0). Thus, the area of
the triangle is 1(4)(1) = 2.

In general, the equation of the tan-
gent lineisy = — (Q—IQ) x—l—%. The tan-
gent line intersects the axes at (0, 2)
and (2a,0). Thus, the area of the tri-

angle is

1 2

—(2 -1 =2

520 (2)
For y = & = 272, we have
fl(x) = Top3 = —2/23.

Thus, the slope of the tangent line at
r=ais =2/

When a = 1, the slope of the tangent
line at (1,1) is —2, and the equation
of the tangent line is y = —2x + 3.
The tangent line intersects the axes
at (0,3) and (2,0). Thus the area of

the triangle is 3(3)(2) = 3.

49.

50.

51.

117

When a = 2, the slope of the tangent
line at (2, i) is _Z’ and the equat1on
of the tangent line is y = —Zx + Z'
The tangent line intersects the axes
at (0,2) and (3,0). Thus the area of
the triangle is 5(%)(3) =2

Since % %, we see that the result for

exercise 47 does not hold here.
oy g+ h) —g(x)
(2) o/ (2) = lim T2

= |, 0 s s

= llII(l)}lL [f(x+h) — f(x)]
= f'(2)
() o/ (2) = iy L =910
—HﬁLﬁmW%£%ﬂ>
1
i }1112})% [f(a) — f(a)]
@) o) = fim 2
N }11{% }f Lﬁrtrgggrh 1) = a%lgw 70
= lim > [f(a) - f(a)]
=0
() o/(a) = Jimg LN =900
1 . .
=D i, 1) min 510
= l1rr(1) . [f(x+h) — f(x)]
= f'()

If d(t) represents the national debt,
then d'(t) represents the rate of
change of the national debt. The
debt itself, by implication, is increas-
ing and therefore d'(t) > 0.

Since the rate of increase has been re-
duced, this implies d”’(t) is being re-

|

|

|

|
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52.

53.

54.

duced. We cannot conclude anything
about the size of d(t).

m/(t) = 6t kg per meter. m/(t) repre-
sents the rate the mass is increasing
as t increases. This is the linear den-
sity of the rod.

w(b) = cb*/?

w'(b) = %bm = 3CT¢5
w'(b) > 1 when

362\/5 >1, Vb > %
b> 92

Since ¢ is constant, when b is large
enough, b will be greater than 94?. Af-
ter this point, when b increases by 1
unit, the leg width w is increasing by
more than 1 unit, so that leg width is
increasing faster than body length.

This puts a limitation on the size
of land animals since, eventually, the
body will not be long enough to acco-
modate the width of the legs.

World Record Times — Men’s Track

Dist. Time Ave f(d)
400 43.18 9.26 9.25
800 101.11 7.91 8.17
1000 131.96 7.58 7.86
1500 206.00 7.28 7.32
2000 284.79 7.02 6.95

Here, distance is in meters, time is in
seconds and hence average in meters
per second.

The function f(d) is quite close to
predicting the average speed of world
record pace.

v'(d) represents the rate of change in
average speed over d meters per me-
ter. v'(d) tells us how much v(d)
would change if d changed to d + 1.

55.

56.

57.

CHAPTER 2 DIFFERENTIATION

We can approximate f’(2000) =~
9039.5—8690.7 o

T2001-1999 174.4. This is the rate
of change of the GDP in billions of

dollars per year.

To approximate f”(2000), we first

. ~ 9016.8-8347.3 _
estimate f/(1999) ~ T3000—1998
334.75 and f/(1998) ~ S0X0T_80045 _

19991997
343.1.

Since these values are decreasing,
17(2000) is negative. We estimate
£7(2000) =~ % = —160.35.
This represents the rate of change of
the rate of change of the GDP over
time. In 2000, the GDP is increasing
by a rate of 343.1 billion dollars per
year, but this increase is decreasing
by a rate of 160.35 billion dollars-per-

year per year.

1/(2000) can be approximated by the
average rate of change from 1995 to

~ 4619-4353 _

2000. f7(2000) ~ 5332838 — 532,
This is the rate of change of weight of
SUVs over time. In 2000 the weight
of SUVs is increasing by 53.2 pounds

per year.

Similarly approximate f’(1995) =
32.8 and f/(1990) ~ 26.8.

The second derivative is definitely

positive. We can approximate
~ 532-328 _ :
f"(2000) =~ see=5s; = 4.08. This

is the rate of change in the rate of
change of the weight of SUVs. Not
only are SUVs getting heavier at a
rate of 53.2 pounds per year, this rate
is itself increasing at a rate of about
4 pounds-per-year per year.

Newton’s Law states that force equals
mass times acceleration. That is, if
F(t) is the driving force at time t,
then m - f"(t) = m - a(t) = F(t)
in which m is the mass, appropri-
ately unitized. The third derivative of
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58.

59.

60.

61.

62.

the distance function is then f"”(t) =
a/(t) = LF'(t). Tt is both the deriva-
tive of the acceleration and directly
proportional to the rate of change in
force. Thus an abrupt change in ac-
celeration or “jerk” is the direct con-
sequence of an abrupt change in force.

Q'(z) = 500LY327/2 and

Q' (40) = %. This is the rate of
change in the daily output as capital
investment changes. As capital in-
vestment increases, the daily output
increases, and ()'(40) tells us how fast
the daily output is increasing when

the capital investment is $40,000.

59-62 Commentary: At this stage,
finding a function whose derivative is
given, is a matter of thinking back-
ward, or of anticipation. When the
derivative is a power, one anticipates
that it could have arisen from differ-
entiating a function which was also a
power, but whose exponent was one
higher. That is, to get to 2P, try czPt!
where ¢ is some constant. After that,
it is a matter of testing and adjusting
the constant ¢. The answer is never
unique (why?), but anything offered
can always be checked by differentia-
tion.

Try f(z) = cx* for some constant c.
Then f'(x) = 4cz® so ¢ must be 1.
One possible answer is 4.

Try f(x) = cz® for some constant c.
Then f'(z) = 5cx? so ¢ must be 1.
One possible answer is 2.

fla) = /7 = all

flz) = gx?’/ 2 is one possible function.

If f/(z) =272, then f(x) = —z7 ! is
one possible function.

63.

64.

fla+h)—2f(a) + fla—h)

A 2
o [fat ) = (o)
h—0 h?
_[f(a) = fla—h)]
12
o L[fath) — f(o)
h—0 h h
_fla) = fla—h)
h
= lim 1 lim flath) = flo)
h—0 h _h—>0 h
SILOEICEL)
h—0 h
. 1 ! /
= lim > [f'(a) — f'(a — 1)
Now let £ = —h in the previous equa-
tion, to get
L flat ) = 2f(a) + fla~ h)
h—0 1 h2
= [ = @ )
= lim = [(a+K) — /'(a)
= f"(a)
We have that

z <0

F(1) = 24(0) + f(=h)
h2
)+ f(=h)

and therefore exists.

On the other hand, we have

Fz) = {—295 z <0

2x x>0

and
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x>0

s )72 <0
o

but f”(0) does not exist, since the
limit from the left is —2 but the limit
from the right is 2.

2.4 The Product and

Quotient Rules

1. f(z) = (m +3)(a® — 3z + 1)
fl(z) = L(2*+3)- (a: —3m+1)
(x +3) - L(2* -3z +1)
= (2z)(z® — 3z + 1)
+ (22 + 3)(322 — 3)
2. f(z) = (2* — 22% 4+ 5)(2* — 322 —i—2)
f(z) = L£(2® — 222 +5)(2* — 32% +2)
+ (23— 2274 5) L (21— 322 +2)
= (322 — 4z)(2* — 32% + 2)
+ (2% — 227 + 5)(4a® — 62)
3. f(z) = (Vz +3z) (5a® — 2)
= (2% + 37) (5% — 3271)
fl(z) = (3272 + 3) (52 — 3271)
+ (z'/2 + 32)(10x + 3272)
4. f(x) = (2% — 496)( — 3272+ 2)
P@) = (@~ d)(at — 3072+ 2)
+(x3/2 ) d (I4 31,—2_'_2)
= (2212 — 4)(334 3r72 +2)
+ (2%/? — 4x)(42° + 6273)
5. f(r) = 85
, (a1 £ (32-2)— (32—2) £ (52+1))
f (‘T> - (5z+1)2
_ 3(s+1)—(32-2)5
_ 15x+%5f;r51:c)i10 _ _ 13
- (5z+1)2 T (hz+1)2
6. f(x) =
(:1:275x+1)dim(x2+2x+5)7($2+2x+5)%(x275x+1)
(x2—bz+1)2
_ (22=52+1)(22+2)—(22+22+5)(2x—5)
- (z2—52+1)2
_ 326 z—221/2
f ’(x) =

10.

11.

12.

13.

14.

- fr) =

- fr) =
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((52%-2) L (2—221/2)— (z—221/2) £ (522 -2))
3 (522—2)2
~1/2)—(2—221/2)(102))
(522—2)2
((522—2-52%/24+221/2) (1022 —202%/2))

(522 —2)?2

_ 3(—ba?+415x3/242271/2_9)
- (522—2)2

5 ((522-2)(1-=

6x—2z 1

o2 all?

f(x) =

(x2+m1/2)%(61721_1)7(6x72x_1)%(I2+ml/2)
(22 +21/2)2

- (x2+x1/2)(6+2x*2)—(6:1:—2:1:*1)(2354—%:1:*1/2)

- (:1:2+x1/2)2

(z4+1)(z—2) _ z2—2—2
r2—5x+1 = x2-bz+1

() =

((3:2—51:+1) (22 —2—2)— (22— — 2)%(962—53:—5—1))

(z2—5z+1)2
((2%—52+1)(22-1)—(22—2-2)(22-5))
(z2—5z+1)2
_ —4x%462-11
— (22-5x+1)2

fx) =

(22 45z) L (22 —22)— (12721)%(12+5z)
f/( ) dz e d
(22+52) (22 —2)— (22 —22) (22+5)

(z2+52)2

z2—2x
x245z

We do not recommend treating this
one as a quotient, but advise prelim-
inary simplification.

J@) = ==

— a2 43z 2
R
23/2 4 3p1/2 _ 9p—1/2
2172 1/2 —3/2
f’(fﬂ)—§ R A A
_ 2z
f<x) B I2—~2_1 d d (.2
r°4+1)=—=(2z)—(2z) == (z*+1
_ (@241)(2)—(2x)(2x) _ 2-222
= (1.2+1)2 - (m2+1)2
We simplify instead of using the prod-

uct rule.

f(x) =2 (Yr+3) =2*%+ 32
f(z) =323+ 3

We simplify instead of using the prod-
uct rule.

f(z) = 32* 4 5272

f'(x) = 22— 10273
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15.

34322 )

d (234322 )
2242

i)

(x2+2)d—‘i(x3+3x2)—(a:3+3a:2)d—d$
R

_ (2242)-(322+62)—(23+322)-(22)

o ($2+2)

33: +622+623+122— (224 +623)

CEE

_ z*4622412z

EEDE

so f'(x) =

l’3 IQ
(22) - (535

(z2+2)

i 4622+12x
($2 +2)2

)@=

L )
z(z+1) o

16.

17.

)

+ f(2)g (2)h(z) + f(x)g(z) W' (x)
In the general case of a product of
n functions, the derivative will have
n terms to be added, each term a
product of all but one of the func-
tions multiplied by the derivative of
the missing function.

—1 1

18. The derivative of g(x)

g(@) £ (1)-(1) g () _
g(x)?

g (z)
 g(2)?

= —g'(x)(g(x))~

as claimed.

The derivative of f(x)(g(z))™! is then
F'@)(g(@) ™+ f(@)(=g (2)(g(2)) 7).

19 J'0) = [£20) (72 -2 1)
+a?2/3 [L (a; —2)] (z¥—2+1)
+ 2?32 = 2) L (23 — 1+ 1)

121

= 2271322 — 2)(a® — 2 + 1)
+ 2232x)(2® — 2 + 1)
+ 223(2? — 2)(32% — 1)

1(z% — 22+ 1)(3 — 2/x)
+ (z+4)(322 — 2)(3 — 2/x)
+ (x4 4)(2® — 220+ 1)(2/2?).

f(x)g(x)
= ['(z)g(x) +

20. f'(x) =

21. h(z) =

W (x) f(x)g'(x)

(a) h(1) = f(1)g(1)
(=2)(1) = -2
h'(1) = f'(L)g(1) + f(1)g'(1)
(3)(1) +(=2)(=2) =7
So the equation of the tangent
line is
y="Tx—-1)—2.
h(0) = f(0)g(0)
(—1)(3) =3
f'(0)g(0) + f(0)g'(0)
( 1)(3) +(=1)(=1)

h(0) =

So the equatlon of the tangent
line is
y = —2x — 3.

So the equation of the tangent
line is
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=4
So the equation of the tangent
line is

(a) h(1) = 12f(1) = —2

(1) =2(1)f(1) + 12£'(1)
=(2)(-2)+3=-1

So the equation of the tangent
line is
y=—(r—1)—2.

(b) 1(0) =02f(0) =0
h'(0) = 2(0)£(0) + 02f'(0) = 0
So the equation of the tangent

line is
y=0.
- >:@< ) — a%g/()
vy 2xg(x) — 2 (v
S PR
12 1
R
/ . g —17g
"=
_@QO-(2) _,
(1)*
So the equation of the tangent
line is
y=4(zr—1)+1.
02 0
R W
/ g —U7g
"0 =T e
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So the equation of the tangent
line is
y = 0.

25. The rate at which the quantity @
changes is ). Since the amount is
said to be “decreasing at a rate of 4%”
we have to ask “4% of what?” The
answer in this type of context is usu-
ally 4% of itself. In other words, ' =
—.04Q. As for P, the 3% rate of in-

crease would translate as P’ = .03P.
By the product rule, with R = PQ),
we have:

R = (PQ)/ — P/Q + PQ/

= (.03P)Q + P(—.04Q)

= —(.01)PQ = (—.01)R.
In other words, revenue is decreasing
at a rate of 1%.

26. Revenue will be constant when the
derivative is 0. Substituting @' =
—0.04Q) and P’ = aP into the expres-
sion for R’ gives
R = —0.04QP + aQP

= (—0.04 + a)QP
This is zero when a = 0.04, so price
must increase by 4%.

27. R =Q'P + QP
At a certain moment of time (call it
to) we are given P(tg) = 20 ($/item)
Q(to) = 20,000 (items)
P'(tg) = 1.25 ($/item/year)
Q' (ty) = 2,000 (items/year)
= R/(ty) = 2,000(20) + (20,000)1.25

= 65,000 $/year

So revenue is increasing by
$65,000/year at the time tg.

28. We are given P = $14, Q = 12,000
and @ = 1,200, We want R =
$20,000. Substituting these values
into the expression for R’ (see exer-
cise 25) yields:

20,000 = 1200 - 14 + 12,000 - P’
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29.

30.

31.

Solve to get P’ = 0.27 dollars per
year.

82.5m — 6.75
If u(m) = m—+ .15

the quotient rule,

then using

du  (m+ .15)(82.5) — (82.5m — 6.75)1

dm (m +.15)2

19125
~ (m+.15)2
which is clearly positive. It seems to
be saying that initial ball speed is an
increasing function of the mass of the
bat. Meanwhile,
19.125

(1) = ~ 14.4
t L9195 6
'1.9) = =222 104
w(1.2) = 5= ~ 1049,

which suggests that the rate at which
this speed is increasing is decreasing.

(M +1.05)7%(86.625 — 45M)

!/
M pu—
w (M) (M + 1.05)2
(M + 1.05)(86.625 — 45M)

(M +1.05)2
(—45M — 47.25) — (86.625 — 45M)

(M +1.05)2
—133.875

(M + 1.05)2

This quantity is negative. In baseball
terms, as the mass of the baseball in-
creases, the initial velocity decreases.

14.11 282.2
If u(m) = _ , then
m+.05  20m+1
du  (20m+1)-0— 282.2(20)
dm (20m + 1)2
. —5644
~ (20m + 1)2

This is clearly negative, which means
that impact speed of the ball is a de-
creasing function of the weight of the
club. It appears that the explanation
may have to do with the stated fact
that the speed of the club is inversely
proportional to its mass. Although

32.

33.

34.

35.
36.
37.

123

the lesson of Example 4.6 was that
a heavier club makes for greater ball
velocity, that was assuming a fixed
club speed, quite a different assump-
tion from this problem.

2822
u'(v) = 0.2822 ~ 1.3. The initial

speed of the ball increases 1.3 times
more than the increase in club speed.

flz+h) = fx)

/ BT
TR
— f(0
! T
F0) = Jim ==
_ i P9(h) — 0
h—0 ) (h}ﬁ
— i Y
=
= lim g(h)
= 9(0)
since g is continuous at x = 0.
When g(z) = |z|, g(z) is continuous

but not differentiable at z = 0. We
have
—z? <0
f(z) = a|z| = { TS This i
T 0.

differentiable at x = 0.

x>
This does not work. For example,
suppose a = 2 and let g(z) = |z — 2|.

Then
— 22+ 2 <2

f(2) = ele—2| = {

— 2x T > 2
SO
—2r+2 <2
I
€Tr) =
f() 2 — 2 T > 2.

The left hand limit as x approaches 2
is —2 while the right hand limit is 2.
Since these are not equal, f(x) is not
differentiable at z = 2.

Answers depend on CAS.
Answers depend on CAS.

For any constant k, the derivative of
sin kx is k cos kx.
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d i
Graph of == sin x:

38. The derivative of  sinkxz?
2kx cos kx?.

d qin 2.
Graph of - sin x°:

CHAPTER 2 DIFFERENTIATION

| ﬂ{\{\/\ ,,\,j/,\,ﬂ,ﬂ, |
UU Vo UUL

Graph of L sin 22%:

39. Using the quotient rule, we

got a derivative in the form
3z

2323 + 2

3T
2./72(3z + 1)
tor v 22 out of the denominator as |z
and use

T 1 x>0 .
— = to rewrite the
|| -1 <0

function as in the problem. CAS an-
SWers may vary.

which could be written

. One could then fac-
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40.

41.

42.

43.

44.

45.

The function f(x) simplifies to
f(z) = 2z, so f'(x) = 2. CAS an-

swers vary, but should simplify to 2.

If F(z)= f(x)g(x) then
F'(z) = f'(z)g(x) + ( )g'(x) and
F'(z) = f"(z)g(z) + f'()g'(z)
+ fl(@)d'(z) + f(2)g" (x)
= f"(x)g(x) + 2f"()d (x)
+ f(2)g" ()
F"(z) = f"(x)g(x) + f"(z)g'(x)
+2f"(z)g'(x) +2f"()g" (x)
+ f'(@)g"(x) + f(z)g" (2)
—f"'( )g(x) + 3f"(x)g ()
+3f'(x)g"(x) + f(z)g" (x)

One can see obvious parallels to the
binomial coefficients as they come
from Pascal’s Triangle:
(a+0)?*=a’+2ab+1?

(a+0)% = a®+ 3a®b + 3ab® + b3.

On this basis, one could correctly pre-
dict the pattern of the fourth or any
higher derivative.

F(4)(x) =

f(4)g+4f///g/+6f//g//+4f/g///+fg(4)

If g(z) = [f(2)]* = f(2)f(z), then

g'(x) = f'(@) f(z) + f(z) f'(2)

=2f(2)["(x).

g(z) = f(@)[f ()],

9’(96): (x)[f(x )] ( )2f (@) f'(x))

3[f(@)]*f' ().
The  derivative of  [f(x)]™ s

n[f(@)]" 1 f (x).

(P+ M) (V — nb) = nRT

V2
n2a nRT
P .
R VR nb
nRT n°a
p= _ra
V—nb V2

From this, we find with some diffi-
culty

. lim f(z) =

125
—nRT 2n2a
P(V) =
V)= * 7
2InRT 6n’a
P'(V) = .
Vi=w—mp* 7
Obviously, if P'(V') = 0, then
2na RT

VsV —nb)2<: X)
in which X is a temporary name. If
P"(V) is also zero, then
2nX 3nX
(V—nb) V
:nX{ 2 3 :nX(Bnb—V)’
V—nb V V(V —nb)

=V =3nb, so V —nb=2nb, and
2na B 2a

VR 2T
RT = (V —nb)*X = 4n*V*X

0=P'(V)=

8a
27b

, and since

nRT n2a
= — —— . we have
vz’
8an n2a a

~27b(2nb) T 2TR

22
In summary,
8a a

(TmPca VYC) = (ma Wa‘gnb)

Substitute in the given numbers; in
particular 7, = 647° (Kelvin).

0 and lim f(z) = 1.
Without any activator there is no en-
zyme. With unlimited amount of ac-
tivator, the amount of enzyme ap-
proaches 1.

27
M f(x): 1+:U27
. _ (1 + I2'7) . 2‘71.1.7 _ 2‘7‘%.1.7 . (I2'7)
fe) = (1+ 227)
B 27217
(1+227)°

The fact that 0 < f(x) < 1 when
x > 0 suggest to us that f may
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48.

49.

50.

51.

52

be some kind of concentration ratio
or percentage-of-presence of the al-
losteric enzyme in some system. If so,
the derivative would be interpreted as
the rate of change in the concentra-
tion per unit of activator.

lin(l) f(z) = 1 and lim f(z) = 0.
Without any inhibitor the amount of
enzyme approaches 1. With unlim-
ited amount of inhibitor, the amount
of enzyme approaches 0.

2. 717

f'x) = Ut

For positive z, f’ is negative. Increase
in the amount of inhibitor leads to a
decrease in the amount of enzyme.

[ f(2)] = 322 - f(x) + 2Pf'()
2?f'(x) — 2z f(x)

xrd

Quotient rule gives

Utilizing < (/z) = ﬁ (which is a
special case of the power rule), we find
d ( ﬁ)  f@)5z = Vaf' ()
dr \ f(x)) [/ (@)]?
@) —22f'(a)
2V[f(2))?

Product rule gives

1 !/
NG () +Va f'(2).

2.5 The Chain Rule

1.

flz) = (a® = 1)?

Using the chain rule:

fl(x) =2(2® — 1)(32?) = 62%(23 — 1)

Using the product rule:

fl@) = (a® = 1)(a® = 1)

fl(@) = (32%)(2® = 1) + (2 — 1)(32?)
= 2(32%)(x® — 1)

CHAPTER 2 DIFFERENTIATION

= 6z%(2® — 1)
Using preliminary multiplication:
flz)=a2%+22°+1
f'(z) = 62° + 622

= 62%(23 — 1)

f@) =@+ 22+ 1)(2? + 22+ 1)

Using the product rule

f'z) =

(22 + 2)(z* + 22 + 1) + (2% + 22 +
1)(2z +2)

Using the chain rule:

(@) =2(2* + 22+ 1) (22 + 2)

- fl@) = (@*+1)°

Chain rule:

f(z) =3(x*+1)%- 2z

Using preliminary multiplication:
flx) =a%+32* + 322 + 1

f'(x) = 62° + 1223 + 6z

. f(z) = 162* + 3223 + 2422 + 8z + 1,

SO
f(z) = 6423 + 9622 + 48z + 8
Using the chain rule:
F(2) = 420+ 173(2)

@)= Vit t 4

1
") = —— - 27
f(z) 2V +4
x

2+ 4

@)= (@ 4+ —1)>°

fl(x) =32 +x —1)%(32% + 1)

. fla) = 2°Vad + 2

2’ ———— 322+ 5243 + 2
2V a3 + 2
327 + 1024 (23 + 2)

2V x3 + 2

1327 + 2024
2/ a3 + 2

. fz) = (2% 4 2)2%/?
f/

(z) = 3a? - 22 + (2 + 2) 53/
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3
9. f(x)zm— / \/x2+1—$(ﬁ> 2z
Fla) = 322(22 4 4)2 — 2(2% + 4)(23)2® i
N 22+ 4)4 =
3t + 1242 ¢ 4zt ) (22 + vz +1
B (22 4+4)3 (2+1)2(22—1)20— (22 —1)22z
_ (12— 2a?) 18. f'(x) = @2 +1)?
ZEZ + 4 3
( ) _
22+ 4 19 /(@) =/ 7757
10. f(x) = 50 2 5 P =L (% 4+ 1) — 22
f’(m):x .2x—(f32 + 4)6x 2\/= (22 + 1)?
T B 1—a?
6 2z (22 4+ 1)3/2
11. f(x) = = 6(x244)71/2 Vel )
V244 )
"(x) = —3(z? —3/2. _ 1
J(a) 3@6;— 4 2 20. fi(z) = (2\/(x2+1)(\/§+1)3> '
INCCERIEE (20(vE + 1 + (22 + 1)3(VE + 125 )
12. f(x) = (1/8)(a® + 4)5
f'(x) = (5/8)(2? + 4)*(32?) ; 3
21. f(z) = A| x| 2* + 22y
13, f(x) = (V51 8)"" R
4T +3)V3 1 1/471/2
o) = W L $@) = (ot +20 (55)"]
2(\/x +3)1/3 a2\
=T 3 f’(ﬁ):%(x[x4+2x(%+z) } ) '
1/2
1 4 ot + 20 (%) "]
14. f'(x) = ﬁ<$4/3+3)+\/5 (5) o ( o2 (S i
—1/2
2 o (3) ot 420 (29)"]
_ 3 a g \1/4
15. ;I((x)) (VeF+2+22) 19 +2(2)
Tr) = —3/4 _3
. + 22 (2) (& (—)])
9 (m n 23:) ’ {—2 3;?2 -+ 2] ) &) (e
r° +
_ 322 + 43 + 2 22. f(z) = 322+ 2¢/a3 +4 /x4
(VE3+ 242233 - Vid + 2 (23 —4)va? +2
Fla) = & (32%42/23+4/2h) (2% —2) Va2 +2)
- x37 2 CEQ
16. f(z) = (64— 120" +2%)"" <3mz+2¢m>(di<<ilf4> o
{9 = - R D)
5(64 — 1222 4+ x4)_1/2(—24x + 42°) <6x+(\/m)(3m2—16x*5)) (z3—4)VzT12
B (EEOHCED)
17. f(2) = —= (2423547 |30 VTR )

vz +1 - (z3—4)2(22+2)
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23.

24.

25.

26.

27.

1 x
(1) = —m——=(27) = —
/@) 2v/2? + 16 Va2 +16
£(3) = e =
V32 +16 5
So the tangent line is y = —(z—3)+5
or —3x—|—E
YTETT
3
—9) ==
=3
—12z
!
(@) (24 4)2
24 3
!
oy == _2
The equation of the tangent line is
3 3
== 2)+ -
y S(x—l— )+4
s(t) =Vt?+8
2t t
v(t) = §'(t) = —
0 Q 22 +8 V2 +38
m/s
2 1 V3
v(2)=—=—==—m/s
(2) = 7= 53 /
60t
s(t) =
() t2+1
1
o) = V12 4+ 1(60) — 60t 572t
241
m/s
60v5— 22 19
v(2) = i 5 E:/gm/s

For higher derivatives, fractional ex-
ponents will be required.

f(@)=v2r+1=(20+1)"?
fe) = %@xﬂ)‘mz = (20+1)71/2
f”(I) = —%(21“ + 1)—3/2(2)

= _(2:17 + 1)—3/2
f///(l-) [ <_g) (2$ + 1)75/2 )

= 3(2:5 + 1)75/2
(@) =3 (—g) (20 +1)77%.2

28.

29.

30.

31.

CHAPTER 2 DIFFERENTIATION

= —15(2z +1)77/2

f(")(x) _

(=113, .. (2n—3)(22+1)~@n=D/2
f) = —

o= G

f(z) = TR

oy - 2

1) = o

) =

W(1) = f'(9(1))g'(1)

g(1) =4, s0 K'(1) = f'(4)g'(1).

From the table, we have:

f'(4) = 265%(2_32) =2, and
g'(1) ~ 50) =250
h'(1) =~ 4.

K1) =g (f(1))f(1)
f(1) = =2,50 K'(1) = g'(=2)f'(1).

From the table, we have:

2—-6
I—2 ~N = -9
g( ) _1_(_3) SO

K(1) =~ 2.
K (3) =g (f(3)f(3)
fB3)==2,50F(3) = g'(=2)f'(3).

From the table, we have:

= —1, and

/ ~ 0— (_3) _ §
f3)~ T22_6_ 5 and
g (—2) T (3) = —250
K'(1) =~ —3



2.5 THE CHAIN RULE

32.

33.

34.

35.

36.

37.

38.

W(3) = f'(9(3))g'(3)
9(3) =4, 50 W' (3) = f'(4)g'(3).

From the table, we have:

= 2, and

f(x) = 2°+4x—1 is a one-to-one func-
tion with f(0) = —1 and f’(0) = 4.
Therefore g(—1) = 0 and

(1) = 5 = e = 3
! Fla=D) ~ F{0) 4
f(z) = 2 + 2x + 1 is a one-to-
one function with f(—1) = —2 and

f'(=1) = 5. Therefore g(—2) = —1
and

1 1 1

g(-2) =

fle(=2) =) 5

f(z) = 2° + 32% + x is a one-to-
one function with f(1) = 5 and
f'(1) =549+ 1 = 15. Therefore
g(5) =1 and

f(z) = 2°+4x—2 is a one-to-one func-
tion with f(0) = —2 and f’(0) = 4.
Therefore g(—2) = 0 and

39.

40.

41.

42.

43.
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f(z) = Va® + 2z 44 is a one-to-one
function and f(0) = 2 so g(2) = 0.
Meanwhile,

/ 1 2

P = e o +2)
ro=i2, 1

9@ =F5m) ~ Fo)

f(z) = Vad + 4234+ 3z + 1 is a one-
to-one function and f(1) = 3 so
g(3) = 1. Meanwhile,

1
f'(z) = §(x5+4x3+3x+1)’1/2(5x4+
1227 + 3)
20 10
!
1 = —-—_ —-—
g3) = ==

f@) = (22 43 20

Recognizing the “2z” as the deriva-
tive of 2% + 3, we guess g(z) = c(z?® +
3)% where c is some constant.

g (z) = 3c(x? + 3)* - 2z

which will be f(x) only if 3¢ = 1, so

c=1/3, and
x4+ 3)3

A good initial guess is (2% + 4)%/3,

then adjust the constant to get

o) = £ + 4.

f) = —=

RGED

Recognizing the “x” as half the
derivative of z? + 1, and knowing
that differentiation throws the square
root into the denominator, we guess
g(z) = cv/2? 4+ 1 where c is some con-
stant and find that

C

— (22
2 $2—|—1( )

g'(x) =
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44.

45.

46.

47.

48.

49.

50.

will match f(z) if ¢ =1, so

g(x) =va?+ 1.

A good initial guess is (z%2+1)~1, then
adjust the constant to get

o(r) = 5 + 1)

As a temporary device given any f,
set g(x) = f(—x). Then by the chain
rule,

g(x) = f'(=2)(=1) = = f'(==).
In the even case (¢ = f) this reads
f'(—x) = —f'(x) and shows f’ is odd.
In the odd case (¢ = —f—and there-
fore ¢ = —f'), this reads —f'(z) =
—f'(=x)or f'(z) = f'(—x) and shows
1’ is even.

Chain rule gives 2z f'(x?).

:f’(ﬁ)-% x
1

NG

Chain rule g