# Sultan Qaboos University Physics Department, College of Science 

Physics 2107: Physics for Engineering I Fall Semester 2006-Test II

| ID No.: | 1 | 2 | 3 | 4 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Name: |  |  |  |  |  |

## Full Mark:40 points Please check that your examination paper has 4 Questions Do not use additional papers

1) Blocks $\mathrm{A}, \mathrm{B}$, and C are placed as in the figure and connected by ropes of negligible masses. Both A and B weigh 25.0 N each, and the coefficient of kinetic friction between each block and the surface is 0.35 . Block C moves down with constant velocity.
a) Find the tension in the rope connecting blocks A and B
b) What is the weight of block C ?
c) If the rope connecting A and B were cut, what would be the acceleration of block C ?

2) A force $\mathbf{F}=2.5 \mathrm{xy}^{i} \mathrm{t}$ (where $t$ is the unit vector, $F$ is in Newton and x and y are in meters) acts on an object in the x-direction. Calculate the work done on the object by this force for the following displacement:
a) The object starts at the point $\mathrm{x}=0, \mathrm{y}=3.0$ and moves parallel to the x -axis to the point $x=2.0$ and $y=3.0$
b) The object starts at the point $x=2, y=0$ and moves parallel to the $y$-axis to the point $x=2.0$ and $y=3.0$
c) The object starts at the point $\mathrm{x}=0, \mathrm{y}=0$ and moves along the line $\mathrm{y}=1.5 \mathrm{x}$ to the point $\mathrm{x}=2, \mathrm{y}=3.0$
3) A 15.0 kg stone slides down a frictionless hill, leaving point A with a speed of $10.0 \mathrm{~m} / \mathrm{s}$ to reach point B on the ground and continue on a horizontal friction surface with kinetic coefficient $\mu_{\mathrm{k}}=0.2$ for a distance of 100.0 m . Then, it runs into a very long spring with spring constant $2.0 \mathrm{~N} / \mathrm{m}$.
a) What is the speed of the stone when it reaches point B ?

4) An open container of mass 50.0 kg is rolling to the left at speed of $5.0 \mathrm{~m} / \mathrm{s}$ on a frictionless surface. A 15.0 kg box slides down a $37^{\circ}$ inclined plane and leaves the end of the plane with speed of $3.0 \mathrm{~m} / \mathrm{s}$. The end of the plane is a vertical distance of 4.0 m above the bottom of the container (see figure). The box lands in the container and they roll off together.
a- What are the velocity components of the box just before it lands in the container?
b- What is the magnitude and direction of the final velocity of the container?

