Sultan Qaboos University Department of Physics, College of Science PHYS2107: Physics for Engineering I - Test 2

Name:
ID No:
Section:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Tot.

Full Mark: 40 points

Answer all questions
Monday, $14^{\text {th }}$ November 2005
Time: 5:15-6:45 pm

1. A block of mass 5 kg on 25°-inclined plane, is subjected to a horizontal force \mathbf{F} as shown in the figure. The coefficient of static friction is $\mu_{\mathrm{s}}=0.4$ and the coefficient of kinetic friction is $\mu_{\mathrm{k}}=0.2$.

a) Find the minimum magnitude of the force \mathbf{F} so that the block is about to slide down the inclined plane.
b) Find the maximum magnitude of the force \mathbf{F} so that the block is about to slide up the inclined plane.
c) What value of F is required to move the block up the inclined plane at constant speed?
(10 marks)
2. The only force acting on 1.5 kg body, as the body moves along the x -axis, varies as shown in the figure. The kinetic energy of the body at $x=2 \mathrm{~m}$ is 15 J .

a) What is the kinetic energy of the body at the origin $(x=0)$?
b) What is the maximum kinetic energy attained by the body between $x=0$ and $x=4 \mathrm{~m}$.
c) Does the body stop between $\mathrm{x}=0$ and $\mathrm{x}=4 \mathrm{~m}$? Justify your answer.
3. A 1.5 kg block, with an initial speed \boldsymbol{v}_{0}, slides head on into a (relaxed) spring with a spring constant $\mathrm{k}=200 \mathrm{~N} / \mathrm{m}$. Both the block and the spring are on a 20°-frictionless inclined plane, initially separated by 50 cm , as shown in the figure. The block momentarily stops when it compresses the spring by 2.5 cm .

a) What is the work done by the spring force?
b) What is the change in gravitational potential energy of the block?
c) Find the initial speed v_{0} of the block.
4. A block of mass $\mathrm{M}=15 \mathrm{~kg}$ moves with velocity \mathbf{V} and explodes at the origin into two pieces of masses $m_{1}=10 \mathrm{~kg}$ and $\mathrm{m}_{2}=5 \mathrm{~kg}$. The piece m_{1} moves in the positive direction of y axis with speed $\mathrm{v}_{1}=4.5 \mathrm{~m} / \mathrm{s}$, whereas the other piece m_{2} moves in the positive direction of x -axis with speed $\mathrm{v}_{2}=8 \mathrm{~m} / \mathrm{s}$.

a) What is the velocity (magnitude and direction) of the center of mass before and after the explosion?
b) How much energy is released in the explosion?
