Sultan Qaboos University Department of Physics, College of Science PHYS2107: Physics for Engineering I - Test 1

Name:		1	2	3	4	Tot.
ID No:						
	_					

Full Mark: 40 points	Answer all questions
----------------------	----------------------

Time: 5:15 – 6:45 pm

Monday, 6^{th} *March* 2006 *Take the gravitational acceleration* $g = 9.8 \text{ m/s}^2$

1. The position of a particle moving along the *x*-axis is given by:

 $x = 6t^2 - t^3$

where x is in meters and t in seconds.

For t > 0,

- a) What is the <u>acceleration</u> of the particle when it momentarily stops?
- b) What are the <u>distance</u> and <u>displacement</u> of the particle between t = 0 s and t = 6 s?
- c) Find the <u>positions</u> of the particle when its velocity is 5 m/s.

Mark: 3+4+3

2. Three vectors **A**, **B** and **C** are shown in the figure. Their magnitudes are A = 10 m, B = 5 m and C = 15 m.

- a) What is the vector **D** such that $\mathbf{D} = \mathbf{A} 2\mathbf{B} + \mathbf{C}$ in <u>unit-vector notation</u>?
- b) Draw the vector \mathbf{D} on an x-y coordinate system (indicating the angle of \mathbf{D} with x-axis).
- c) Find the angle between $A \times B$ and C.

Mark: 4+3+3

3. Two stones A and B, initially 36 m apart, are thrown from the ground at the same instant as shown in the figure. The initial velocity of stone A makes an angle of 53° above the horizontal and has a magnitude of 20 m/s; whereas the stone B is thrown vertically upward. If the two balls cross each other (meet without colliding) later:

a) What is the initial speed of the stone B?

- b) What is the velocity of stone A at the meeting point?
- c) At the meeting point, has stone B passed its highest point on its trajectory? Justify your answer.
- d) Which of the two balls reaches first the ground? Justify your answer.

Mark: 3+3+2+2

4. A horizontal force **F** of magnitude 100 N is applied to block A of mass 2.5 kg, which pushes against block B of mass 4 kg. The two blocks are on a frictionless 20° -inclined plane as shown in the figure.

a) Draw the free-body diagrams of the two objects.

b) What is the acceleration of the blocks?

c) What is the force from block B on block A?

Mark: 3+3+4