Sultan Qaboos University
Department of Physics, College of Science
PHYS2107: Physics for Engineering I - Test 1

Name:
ID No:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Tot.

Full Mark: 40 points	Answer all questions

Monday, 6 $^{\text {th }}$ March 2006
Time: 5:15-6:45 pm
Take the gravitational acceleration $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

1. The position of a particle moving along the x-axis is given by:

$$
x=6 t^{2}-t^{3}
$$

where x is in meters and t in seconds.
For $\mathrm{t}>0$,
a) What is the acceleration of the particle when it momentarily stops?
b) What are the distance and displacement of the particle between $t=0 \mathrm{~s}$ and $\mathrm{t}=6 \mathrm{~s}$?
c) Find the positions of the particle when its velocity is $5 \mathrm{~m} / \mathrm{s}$.
2. Three vectors \mathbf{A}, \mathbf{B} and \mathbf{C} are shown in the figure. Their magnitudes are $\mathbf{A}=10 \mathrm{~m}, \mathrm{~B}=5 \mathrm{~m}$ and $\mathrm{C}=15 \mathrm{~m}$.

a) What is the vector \mathbf{D} such that $\mathbf{D}=\mathbf{A}-2 \mathbf{B}+\mathbf{C}$ in unit-vector notation?
b) Draw the vector \mathbf{D} on an $x-y$ coordinate system (indicating the angle of \mathbf{D} with x-axis).
c) Find the angle between $\mathbf{A} \times \mathbf{B}$ and \mathbf{C}.

Mark: 4+3+3
3. Two stones A and B, initially 36 m apart, are thrown from the ground at the same instant as shown in the figure. The initial velocity of stone A makes an angle of 53° above the horizontal and has a magnitude of $20 \mathrm{~m} / \mathrm{s}$; whereas the stone B is thrown vertically upward. If the two balls cross each other (meet without colliding) later:

a) What is the initial speed of the stone B?
b) What is the velocity of stone A at the meeting point?
c) At the meeting point, has stone B passed its highest point on its trajectory? Justify your answer.
d) Which of the two balls reaches first the ground? Justify your answer.
4. A horizontal force \mathbf{F} of magnitude 100 N is applied to block A of mass 2.5 kg , which pushes against block B of mass 4 kg . The two blocks are on a frictionless 20°-inclined plane as shown in the figure.

a) Draw the free-body diagrams of the two objects.
b) What is the acceleration of the blocks?
c) What is the force from block B on block A?

