## Sultan Qaboos University Department of Physics, College of Science PHYS2107: Physics for Engineering I - Test 2

| Name:  | 1 | 2 | 3 | 4 | Tot. |
|--------|---|---|---|---|------|
| ID No: |   |   |   |   |      |

| Full Mark: 40 points | Answer all questions |
|----------------------|----------------------|
|----------------------|----------------------|

Monday, 17th April 2006

1. Two blocks A and B are connected with a cord over a massless pulley, as shown in the figure. The mass of block A, on the 30°-inclined plane, is 25 kg and the coefficient of kinetic friction and static friction are  $\mu_k = 0.15$  and  $\mu_s = 0.4$ , respectively.



- **a)** Find the minimum mass of block B so that the block A is <u>about to slide down</u> the inclined plane.
- **b)** Find the maximum mass of block B so that the block A is <u>about to slide up</u> the inclined plane.
- c) What is the <u>mass of block B</u> and <u>the tension</u> in the cord when the block A is accelerated up the inclined plane with  $1.5 \text{ m/s}^2$ .

(mark: 3+3+4)

*Time: 5:15 – 6:45 pm* 

- **2.** A 1.5 kg block, initially at rest at the origin ( $x_0 = 0$  and  $y_0 = 0$ ), is subjected to a unique force  $\mathbf{F} = 2\mathbf{i} + 5y\mathbf{j}$  (entries are in Newton).
- a) What work is done by the force **F** as the block moves from a position  $\mathbf{r_1} = 1.5\mathbf{i} + 2\mathbf{j}$  to  $\mathbf{r_2} = -2\mathbf{i} + 4\mathbf{j}$  (with the entries in meters)?
- b) Is the block accelerated or decelerated between positions  $r_1$  and  $r_2$ ? <u>Justify your answer</u>.
- c) What is the speed of the block at  $\mathbf{r_1} = 1.5\mathbf{i} + 2\mathbf{j}$ ?

(mark: 4+2+4)

3. A 1.5 kg block is pushed against a spring (block is not attached to the spring) on  $37^{\circ}$ -inclined plane, until the spring is compressed 35 cm and released from rest. The coefficient of kinetic friction between the block and the inclined plane is  $\mu_k = 0.35$ ; and the spring constant is 150 N/m.



- **a)** What is the change in gravitational potential energy of the block when it momentarily stops?
- **b)** What is the corresponding increase  $\Delta E_{th}$  in the thermal energy of the block–floor system?

(mark: 6 + 4)

- **4.** Tow particles, of masses  $m_1 = 1.5$  kg and  $m_2 = 2$  kg, slide initially across a frictionless horizontal plane with velocities  $\mathbf{v_1} = 2\mathbf{i} 5\mathbf{j}$  and  $\mathbf{v_2} = -4\mathbf{i} + 10\mathbf{j}$ , respectively. They collide and stick together.
- a) What is the velocity (magnitude and direction) of the center of mass  $\underline{before}$  and  $\underline{after}$  the collision?
- **b)** What is the impulse on the particle  $m_1$  due to collision?
- c) What is the change in kinetic energy of the system?

(mark: 4+3+3)