Sultan Qaboos University Department of Physics, College of Science PHYS2107: Physics for Engineering I - Test 2

Name:
ID No:

Full Mark: 40 points

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	Tot.

Answer all questions
Monday, $17^{\text {th }}$ April 2006
Time: 5:15-6:45 pm

1. Two blocks A and B are connected with a cord over a massless pulley, as shown in the figure. The mass of block A, on the 30°-inclined plane, is 25 kg and the coefficient of kinetic friction and static friction are $\mu_{\mathrm{k}}=0.15$ and $\mu_{\mathrm{s}}=0.4$, respectively.

a) Find the minimum mass of block B so that the block A is about to slide down the inclined plane.
b) Find the maximum mass of block B so that the block A is about to slide up the inclined plane.
c) What is the mass of block B and the tension in the cord when the block A is accelerated up the inclined plane with $1.5 \mathrm{~m} / \mathrm{s}^{2}$.
2. A 1.5 kg block, initially at rest at the origin ($x_{0}=0$ and $y_{0}=0$), is subjected to a unique force $\mathbf{F}=2 \boldsymbol{i}+5 y \mathbf{j}$ (entries are in Newton).
a) What work is done by the force \mathbf{F} as the block moves from a position $\mathbf{r}_{\mathbf{1}}=1.5 \mathbf{i}+2 \mathbf{j}$ to $\mathbf{r}_{2}=-2 \mathbf{i}+4 \mathbf{j}$ (with the entries in meters)?
b) Is the block accelerated or decelerated between positions \mathbf{r}_{1} and \mathbf{r}_{2} ? Justify your answer.
c) What is the speed of the block at $\mathbf{r}_{1}=1.5 \mathbf{i}+2 \mathbf{j}$?
(mark: 4+2+4)
3. A 1.5 kg block is pushed against a spring (block is not attached to the spring) on 37°-inclined plane, until the spring is compressed 35 cm and released from rest. The coefficient of kinetic friction between the block and the inclined plane is $\mu_{\mathrm{k}}=0.35$; and the spring constant is $150 \mathrm{~N} / \mathrm{m}$.

a) What is the change in gravitational potential energy of the block when it momentarily stops?
b) What is the corresponding increase $\Delta \mathrm{E}_{\mathrm{th}}$ in the thermal energy of the block-floor system?
(mark: 6 + 4)
4. Tow particles, of masses $m_{1}=1.5 \mathrm{~kg}$ and $\mathrm{m}_{2}=2 \mathrm{~kg}$, slide initially across a frictionless horizontal plane with velocities $\mathbf{v}_{\mathbf{1}}=2 \mathbf{i}-5 \mathbf{j}$ and $\mathbf{v}_{\mathbf{2}}=-4 \mathbf{i}+10 \mathbf{j}$, respectively. They collide and stick together.
a) What is the velocity (magnitude and direction) of the center of mass before and after the collision?
b) What is the impulse on the particle m_{1} due to collision?
c) What is the change in kinetic energy of the system?
