SULTAN QABOOS UNIVERSITY – COLLEGE OF SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS TEST 2 of MATH 2108 - APRIL 24th (SPRING 2007)

Instructions:

- \blacktriangleright The duration of this exam is 60 minutes and is worth 40 marks.
- ▶ Do all problems. To get full credit: show your work, and mention theorems when appropriate.
 - 1. <u>4 marks</u> Determine whether the sequence $\left\{\frac{2^n}{n!}\right\}_{n=1}^{\infty}$ converges or diverges.
 - 2. 4 marks Show that the series $\sum_{k=0}^{\infty} \frac{1}{(k+1)(k+2)}$ converges and find its sum.
 - 3. 3+4 marks
 - (a) Show that $\sum_{k=0}^{\infty} x^k$ converges if |x| < 1 and diverges when $|x| \ge 1$. (b) Evaluate $\sum_{k=0}^{\infty} \left(\frac{1}{2^k} + \frac{(-1)^k}{5^k}\right)$.
 - 4. <u>5 marks</u> For what values of p does the improper integral $\int_{1}^{1} \frac{1}{x^p} dx$ converge or diverge. Show your work and explain clearly your statements. Give all details.
 - 5. <u>5 marks</u> Find the nth MacLaurin polynomial for $f(x) = \ln(1+x)$. Use your result with n = 4 to approximate $\ln 2$.
 - 6. 15 marks Determine whether the following series converge or diverge.

(a)
$$\sum_{k=1}^{\infty} \left(1 - \frac{1}{k}\right)^{k}$$

(b)
$$\sum_{k=1}^{\infty} \frac{k!3^{k}}{(2k+1)!}$$

(c)
$$\sum_{k=1}^{\infty} \frac{5\sqrt{k} + 100}{2k^{2}\sqrt{k} + 9\sqrt{k}}$$

(d)
$$\sum_{k=1}^{\infty} (-1)^{k} \frac{1}{k \ln(k+1)}$$
 (indicate if the series is absolutely or conditionally convergent).