SULTAN QABOOS UNIVERSITY
 DEPARTMENT OF MATHEMATICS AND STATISTICS

22 May 2010

MATH 2107 CALCULUS I
 Spring 2010 Final Examination (Version I)
 (Time allowed: 150 minutes)

NAME:	Section:
Instructions: - This exam has 15 pages including the front page. There are 21 questions (pages 2-15). - The empty page (Page 16), at the end, is for rough work and will not be marked. - Write your name, ID number and Section number on this page. Write your ID number at the top of each sheet. - Attempt all questions, writing your answer in the space below the statement of the question. For questions $1-11$ show all your work. - Do not give more than one answer to a question. - For Multiple Choice Questions, Circle the correct answer. - Please do not separate the pages of this booklet.	

DO NOT WRITE IN THIS BOX!

Question	Max Marks	Score
$\mathbf{1}$	6	
$\mathbf{2}$	5	
$\mathbf{3}$	5	
$\mathbf{4}$	6	
$\mathbf{5}$	5	
$\mathbf{6}$	3	
$\mathbf{7}$	9	
$\mathbf{8}$	15	
$\mathbf{9}$	7	
$\mathbf{1 0}$	6	
$\mathbf{1 1}$	13	
$\mathbf{1 2 - 2 1}$	20	
TOTAL	100	

1. 6 marks Find the value of the constant b that makes the following function continuous at $x=0$:

$$
h(x)= \begin{cases}2 b-x, & x \leq 0 \\ \frac{e-e^{\cos x}}{x^{2}-2 x^{3}}, & x>0\end{cases}
$$

2. 5 marks Suppose that $\lim _{x \rightarrow 3} f(x)=3, \lim _{x \rightarrow 3} g(x)=-2$, and g is continuous at $x=3$. Find the following:
(i) $g(3)$
(ii) $\lim _{x \rightarrow 3}\left(\frac{x-3}{\sqrt{x}-\sqrt{3}}\right) g(x)$
(iii) $\lim _{x \rightarrow 3} g(f(x))$
3. 5 marks Find an equation of the tangent line to the curve $y-x^{2}-\sin ^{-1}(x y)=2 e$ at $x=0$.
4. $3+3$ marks Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$:
(a) $y=e^{2}+\sqrt{2 x+\sinh \left(3 x^{2}\right)}$
(b) $y=\ln \left[\left(\frac{x^{7}}{x^{4}+1}\right)^{1 / 3}\right] \quad$ [Note: Use properties of logarithms]
5. 5 marks Use the Mean Value Theorem to show that $|a| \leq|\tan a|$ for $-\frac{\pi}{2}<a<\frac{\pi}{2}$.
6. 3 marks Use the Intermediate Value Theorem to show that the equation $4-x=2^{x}$ has at least one solution in $[1,2]$.
7. 9 marks An open box is to be made from a 8 feet by 3 feet piece of metal sheet by cutting out squares of equal size from the four corners and folding up the sides. Find the largest volume that the box can have.
8. 15 marks Let $f(x)=3 x^{5}-5 x^{3}$.
(a) Find the critical numbers, intervals of increase and decrease, and the points of local extrema of f.
(b) Find the intervals of concavity and the x-values of inflection points of f, if any.
(c) Find the x and y intercepts of f, if any.
(d) Sketch the graph of f, in the next page (Page 9)

9. 7 marks Use Riemann sums and a limit to compute the exact area under the curve $y=2 x^{2}+3 x$ on $[1,3]$.
10. (a) 3 marks Using the definitions of hyperbolic functions, show that

$$
1+2 \sinh ^{2}(2 x)=\cosh (4 x)
$$

(b) 3 marks Given that $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$, find $\frac{\mathrm{d}}{\mathrm{d} x}\left(\sinh ^{-1} x\right)$.
11. $3+4+6$ marks Evaluate:
(a) $\int_{1}^{4} \frac{2-x}{x^{3 / 2}} \mathrm{~d} x$
(b) $\int\left(1-x^{2}+e^{-2 x}\right)^{13}\left(x+e^{-2 x}\right) \mathrm{d} x$
(c) $\int_{0}^{\pi} \frac{\sin x}{3+|\cos x|} \mathrm{d} x$

Name:

The remainder of this exam consists of Multiple Choice questions. Circle the correct answer for each question. No partial credit will be given. (2 marks for each question)
12. The horizontal asymptotes of $f(x)=\frac{x}{\sqrt[3]{x^{3}+8}}$ are
(A) $y=1, y=-1$
(B) $y=\frac{1}{2}$
(C) $y=1$
(D) none of them
13. $\lim _{x \rightarrow 1^{+}} \frac{\sin (1-x)}{1-x}$ is
(A) 1
(B) -1
(C) $-\infty$
(D) ∞
14. If $f(x)=2 x^{5}+x^{3}+x+3$ has the inverse $g(x)$, then $g^{\prime}(3)$ is equal to
(A) 1
(B) 0
(C) $\frac{1}{10 x^{4}+3 x^{2}+1}$
(D) does not exist
15. The area of a circular region is increasing at the rate of $96 \pi \mathrm{~m}^{2}$ per second. When the area of the region is $64 \pi \mathrm{~m}^{2}$, how fast, in metres per second, is the radius of the region increasing?
(A) 6
(B) 8
(C) 16
(D) $4 \sqrt{3}$
16. $\frac{\mathrm{d}}{\mathrm{d} x} \int_{x}^{0} \cos (2 \pi t) \mathrm{d} t$ is
(A) 0
(B) $-\frac{1}{2 \pi} \sin x$
(C) $\frac{1}{2 \pi} \cos (2 \pi x)$
(D) $-\cos (2 \pi x)$
17. If $g(x)=\left\{\begin{array}{cc}x, & x \leq 1 \\ \frac{1}{x}, & x>1\end{array}\right.$, then $\int_{0}^{e} g(x) \mathrm{d} x$ is
(A) 0
(B) $\frac{3}{2}$
(C) e
(D) $\frac{1}{2}+e$
18. The vertical asymptote(s) of $f(x)=\frac{x-1}{x^{2}+2 x-3}$ are
(A) $x=-1$ and $x=3$
(B) $x=1$ and $x=-3$
(C) $x=-3$
(D) none of them
19. Let $f(x)=\sqrt{4+\sin x}$. The approximate value of f at $x=0.12$ using the linear approximation with $x_{0}=0$, is
(A) 2
(B) 2.06
(C) 2.03
(D) 2.12
20. The exact value of $\operatorname{coth}(\ln 3)$ is
(A) 0
(B) $\frac{4}{5}$
(C) $\frac{5}{4}$
(D) none of them
21. The expression $\frac{1}{50}\left(\sqrt{\frac{1}{50}}+\sqrt{\frac{2}{50}}+\sqrt{\frac{3}{50}}+\cdots+\sqrt{\frac{50}{50}}\right)$ is a Riemann sum approximation, with $n=50$, for
(A) $\int_{0}^{1} \sqrt{\frac{x}{50}} \mathrm{~d} x$
(B) $\int_{0}^{1} \sqrt{x} \mathrm{~d} x$
(C) $\frac{1}{50} \int_{0}^{1} \sqrt{\frac{x}{50}} \mathrm{~d} x$
(D) $\frac{1}{50} \int_{0}^{50} \sqrt{x} \mathrm{~d} x$

This page is for rough work. It will not be graded.

