SULTAN QABOOS UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS 22 May 2010

MATH 2107 CALCULUS I

Spring 2010 Final Examination (VERSION I)

(Time allowed: 150 minutes)

NAME:_	_ID#:	Section:

Instructions:

- This exam has 15 pages including the front page. There are 21 questions (pages 2–15).
- The empty page (Page 16), at the end, is for rough work and will not be marked.
- Write your name, ID number and Section number on this page. Write your ID number at the top of each sheet.
- Attempt all questions, writing your answer in the space below the statement of the question. For questions 1–11 show all your work.
- Do not give more than one answer to a question.
- For Multiple Choice Questions, Circle the correct answer.
- Please DO NOT SEPARATE the pages of this booklet.

Question	Max Marks	Score
1	6	
2	5	
3	5	
4	6	
5	5	
6	3	
7	9	
8	15	
9	7	
10	6	
11	13	
12–21	20	
TOTAL	100	

DO NOT WRITE IN THIS BOX!

1. 6 marks Find the value of the constant b that makes the following function continuous at x = 0:

$$h(x) = \begin{cases} 2b - x, & x \le 0\\ \frac{e - e^{\cos x}}{x^2 - 2x^3}, & x > 0 \end{cases}$$

Name:

2. <u>5 marks</u> Suppose that $\lim_{x\to 3} f(x) = 3$, $\lim_{x\to 3} g(x) = -2$, and g is continuous at x = 3. Find the following:

(i)
$$g(3)$$
 (ii) $\lim_{x \to 3} \left(\frac{x-3}{\sqrt{x}-\sqrt{3}}\right) g(x)$ (iii) $\lim_{x \to 3} g(f(x))$

|--|

3. 5 marks Find an equation of the tangent line to the curve $y - x^2 - \sin^{-1}(xy) = 2e$ at x = 0.

4. $\boxed{3+3 \text{ marks}}$ Find $\frac{dy}{dx}$: (a) $y = e^2 + \sqrt{2x + \sinh(3x^2)}$ (b) $y = \ln\left[\left(\frac{x^7}{x^4+1}\right)^{1/3}\right]$ [Note: Use properties of logarithms] 5. 5 marks Use the Mean Value Theorem to show that $|a| \le |\tan a|$ for $-\frac{\pi}{2} < a < \frac{\pi}{2}$.

6. 3 marks Use the Intermediate Value Theorem to show that the equation $4 - x = 2^x$ has at least one solution in [1, 2].

N	ame:	ID:
_		

7. 9 marks An open box is to be made from a 8 feet by 3 feet piece of metal sheet by cutting out squares of equal size from the four corners and folding up the sides. Find the largest volume that the box can have.

- 8. 15 marks Let $f(x) = 3x^5 5x^3$.
 - (a) Find the critical numbers, intervals of increase and decrease, and the points of local extrema of $f\,.$
 - (b) Find the intervals of concavity and the x-values of inflection points of f, if any.
 - (c) Find the x and y intercepts of f, if any.
 - (d) Sketch the graph of f, in the next page (Page 9)

Name:

_

			97 6			
			4			
			2-			
						x
-4	-3 -	-2 -	-1	1 2	2 :	3
-4	-3 -	-2	-1	1	2 :	
	-3 -	-2			2 :	

9. T marks Use Riemann sums and a limit to compute the exact area under the curve $y = 2x^2 + 3x$ on [1, 3].

- 10. (a) 3 marks Using the definitions of hyperbolic functions, show that $1 + 2\sinh^2(2x) = \cosh(4x)$
 - (b) <u>3 marks</u> Given that $\sinh^{-1} x = \ln \left(x + \sqrt{x^2 + 1} \right)$, find $\frac{\mathrm{d}}{\mathrm{d}x} \left(\sinh^{-1} x \right)$.

ID:

11. 3+4+6 marks Evaluate:

(a)
$$\int_{1}^{4} \frac{2-x}{x^{3/2}} dx$$

(b) $\int (1-x^{2}+e^{-2x})^{13} (x+e^{-2x}) dx$
(c) $\int_{0}^{\pi} \frac{\sin x}{3+|\cos x|} dx$

<u>Name:</u>	ID:	

The remainder of this exam consists of **Multiple Choice** questions. Circle the correct answer for each question. **No partial credit will be given.** (2 marks for each question)

12. The horizontal asymptotes of
$$f(x) = \frac{x}{\sqrt[3]{x^3 + 8}}$$
 are

(A)
$$y = 1, y = -1$$
 (B) $y = \frac{1}{2}$ (C) $y = 1$ (D) none of them

13.
$$\lim_{x \to 1^+} \frac{\sin(1-x)}{1-x}$$
 is
(A) 1 (B) -1 (C) $-\infty$ (D) ∞

14. If $f(x) = 2x^5 + x^3 + x + 3$ has the inverse g(x), then g'(3) is equal to

(A) 1 (B) 0 (C)
$$\frac{1}{10x^4 + 3x^2 + 1}$$
 (D) does not exist

15. The area of a circular region is increasing at the rate of $96\pi \text{ m}^2$ per second. When the area of the region is $64\pi \text{ m}^2$, how fast, in metres per second, is the radius of the region increasing?

(A) 6 (B) 8 (C) 16 (D) $4\sqrt{3}$

16.
$$\frac{d}{dx} \int_{x}^{0} \cos(2\pi t) dt$$
 is
(A) 0 **(B)** $-\frac{1}{2\pi} \sin x$ **(C)** $\frac{1}{2\pi} \cos(2\pi x)$ **(D)** $-\cos(2\pi x)$

18. The vertical asymptote(s) of $f(x) = \frac{x-1}{x^2+2x-3}$ are

(A) x = -1 and x = 3 (B) x = 1 and x = -3 (C) x = -3 (D) none of them

- **19.** Let $f(x) = \sqrt{4 + \sin x}$. The approximate value of f at x = 0.12 using the linear approximation with $x_0 = 0$, is
 - (A) 2 (B) 2.06 (C) 2.03 (D) 2.12

20. The exact value of $\operatorname{coth}(\ln 3)$ is

- (A) 0 (B) $\frac{4}{5}$ (C) $\frac{5}{4}$ (D) none of them
- **21.** The expression $\frac{1}{50} \left(\sqrt{\frac{1}{50}} + \sqrt{\frac{2}{50}} + \sqrt{\frac{3}{50}} + \dots + \sqrt{\frac{50}{50}} \right)$ is a Riemann sum approximation, with n = 50, for

(A)
$$\int_0^1 \sqrt{\frac{x}{50}} \, dx$$
 (B) $\int_0^1 \sqrt{x} \, dx$ (C) $\frac{1}{50} \int_0^1 \sqrt{\frac{x}{50}} \, dx$ (D) $\frac{1}{50} \int_0^{50} \sqrt{x} \, dx$

This page is for rough work. It will not be graded.