Phys	2102	Test II.	Fall 2008
-	Tim	ne 5.15 – (5.15

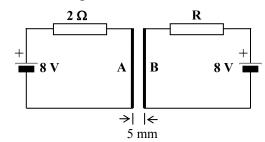
1	2	3	4	5	Total

ID:	Name:	
Full mark: 40	Please check that your test paper has 5 pages.	

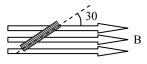
1. [8 Marks]

a. In the table below write the name and the symbol for the unit of the corresponding quantities.

	Name	Symbol
Magnetic field		
Magnetic flux		
Inductance		

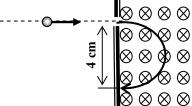

b. In the table below give the correct normal unit for the corresponding quantities.

$I_{ m rms}V_{ m rms}$	
(I is current and V is voltage)	
Lω	
(L is inductance and ω is angular frequency)	
qvB	
(q is charge, v speed and B magnetic field)	
L/R	
(L is inductance and R resistance)	
M x B	
$(\mathcal{M} \text{ is magnetic moment and B magnetic field})$	


2. [6 Marks] Two 10 cm long parallel wires A and B are placed 5mm from each other. The wires have negligible resistance.

Wire A is connected in series with a 2 Ω resistor and an 8 V battery; wire B is connected in series with resistor of resistance R and an 8 V battery as shown in the figure.

- a. Find the current in wire A
- **b.** What should be the value of the resistance R so that the force between the two wires is $1.28 \times 10^{-5} \text{ N}$?
- **c.** Draw on the figure the direction of the force on each wire.


- 3. [8 Marks] A 200 turns square coil of side 1 cm and resistance 2 Ω is placed in a uniform magnetic field of 2T. The plane of the coil makes an angle of 30 degrees with the direction of the field.
- **a.** Calculate the magnetic flux trough the coil.
- **b.** The coil is rotated counter clockwise so that the plane of the coil becomes perpendicular to the direction of the field. If this rotation is completed in 5 ms what is the induced current in the coil during the rotation.


4. [6 Marks] A charged particle of mass 2×10^{-6} kg is moving with velocity $v = 0.1 \text{ ms}^{-1}$. The particle enters a region of uniform magnetic field of 2 T directed perpendicular to the velocity. The path of the particle in the field is as shown in the figure.

a. What is the sign of the charge on the particle?

b. The particle hits the plate at a distance of 4 cm from the point of entry. What is the charge of the particle?

5. [12 Marks] An LRC circuit is connected in series to a 90 V_{rms} , 4 kHz A C voltage source. The values of the components in the circuit are $R=100~\Omega$, $C=2~\mu F$ and L=3~mH.

- **a.** Find the impedance of the circuit.
- **b.** Calculate the phase difference between the voltage and the current in the circuit.
- **c.** Calculate the power factor of the circuit.
- **d.** Calculate the resonance frequency of the circuit.
- **e.** The frequency of the source is changed and made equal to the resonance frequency. What is the voltage across the resistor?
- **f.** At resonance, what is the average power dissipated in the resistor?