
Chapter 4

Integration

4.1 Antiderivatives
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5.

Z
(3x4 − 3x) dx = 3

5
x5 − 3

2
x2 + c

6.

Z
(x3 − 2) dx = 1

4
x4 − 2x+ c

7.

Z µ
3
√
x− 1

x4

¶
dx = 2x3/2+

x−3

3
+c

8.

Z µ
2x−2 +

1√
x

¶
dx

= −2x−1 + 2x1/2 + c

9.

Z
x1/3 − 3
x2/3

dx

=

Z
(x−1/3 − 3x−2/3) dx

=
3

2
x2/3 − 9x1/3 + c

10.

Z
x+ 2x3/4

x5/4
dx

=

Z
(x−1/4 + 2x−1/2) dx

=
4

3
x3/4 + 4x1/2 + c

268
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11.

Z
(2 sinx+ cosx) dx

= −2 cosx+ sinx+ c

12.

Z
(3 cosx− sinx) dx

= 3 sinx+ cosx+ c

13.

Z
2 secx tanx dx = 2 secx+ c

14.

Z
4√
1− x2

dx = 4arcsinx+ c

15.

Z
5 sec2 x dx = 5 tanx+ c

16.

Z
4 cosx

sin2 x
dx = −4 cscx+ c

17.

Z
(3ex − 2) dx = 3ex − 2x+ c

18.

Z
(4x− 2ex) dx = 2x2 − 2ex + c

19.

Z
(3 cosx− 1/x) dx

= 3 sinx− ln |x|+ c

20.

Z
(2x−1+sinx) dx = 2 ln |x|−cosx+c

21.

Z
4x

x2 + 4
dx = 2 ln |x2 + 4|+ c

22.

Z
3

4x2 + 4
dx =

3

4
tan−1 x+ c

23.

Z µ
5x− 3

ex

¶
dx =

5

2
x2 +

3

ex
+ c

24.

Z
(2 cosx− e2x) dx = 2 sinx− e2x

2
+ c

25.

Z
ex

ex + 3
dx = ln | ex + 3|+ c

26.

Z
cosx

sinx
dx = ln | sinx|+ c

27.

Z
ex + 3

ex
dx =

Z
(1 + 3e−x) dx

= x− 3e−x + c

28.

Z
(ex)2 − 2

ex
dx =

Z
(ex − 2e−x) dx

= ex + 2e−x + c

29.

Z
x1/4(x5/4 − 4) dx

=

Z
(x3/2 − 4x1/4) dx

=
2

5
x5/2 − 16

5
x5/4 + c

30.

Z
x2/3(x−4/3 − 3) dx

=

Z
(x−2/3 − 3x2/3) dx

= 3x1/3 − 9
5
x5/3 + c

31. a) N/A

b)

Z
(
√
x3+4) dx =

2

5
x5/2+4x+ c

32. a)

Z
3x2 − 4

x2
dx =

Z
(3− 4x−2) dx

= 3x+ 4x−1 + c

b) N/A

33. a) N/A

b)

Z
sec2 x dx = tanx+ c

34. a)

Z µ
1

x2
− 1
¶

dx = −1
x
− x+ c

b) N/A

35. Use a CAS to find antiderivatives and
verify by computing the derivatives:

1.11(b)

Z
secx dx = ln | secx+tanx|+c

Verify:
d

dx
ln | secx+ tanx|

=
secx tanx+ sec2 x

secx+ tanx
= secx
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1.11(f)

Z
x sin 2x dx

=
sin 2x

4
− x cos 2x

2
+ c

Verify:
d

dx

µ
sin 2x

4
− x cos 2x

2

¶
=
2 cos 2x

4
− cos 2x− 2x sin 2x

2
= x sin 2x

36. Use a CAS to find antiderivatives and
verify by computing the derivatives:

31(a) The answer is too complicated to
be presented here.

32(b)
1

9

Ã
3x+

√
3 ln

¯̄̄2√3− 3x
2
√
3 + 3x

¯̄̄!
+c

Verify:

d

dx

"
1

9

Ã
3x+

√
3 ln

¯̄̄2√3− 3x
2
√
3 + 3x

¯̄̄!#

=
1

9

Ã
3 +

2
√
3 + 3x

2
√
3− 3x ·

−3(2√3 + 3x)− 3(2√3− 3x)
(2
√
3 + 3x)2

!
=
1

9

µ
3− 36

12− 9x2
¶

=
x2

3x2 − 4
33(a) Almost the same as in Exer-

cise 35, example 1.11 (b).

34(b)
1

2
ln
¯̄̄x− 1
x+ 1

¯̄̄
+ c

Verify:
d

dx

µ
1

2
ln
¯̄̄x− 1
x+ 1

¯̄̄¶
=
1

2
· x+ 1
x− 1 ·

(x+ 1)− (x− 1)
(x+ 1)2

=
1

x2 − 1
37. Use a CAS to find antiderivatives and

verify by computing the derivatives:

(a)

Z
x2e−x

3

dx = −1
3
e−x

3

+ c

Verify:
d

dx

µ
−1
3
e−x

3

¶
= −1

3
e−x

3 · (−3x2)
= x2e−x

3

(b)

Z
1

x2 − x
dx = ln |x−1|−ln |x|+c

Verify:
d

dx
(ln |x− 1|− ln |x|)

=
1

x− 1 −
1

x
=

x− (x− 1)
x(x− 1)

=
1

x(x− 1) =
1

x2 − x

(c)

Z
secxdx = ln | secx+tanx|+c

Verify:
d

dx
[ln | secx+ tanx|]

=
secx tanx+ sec2 x

secx+ tanx

=
secx(secx+ tanx)

secx+ tanx
= secx

38. Use a CAS to find antiderivatives and
verify by computing the derivatives:

(a)

Z
x

x4 + 1
dx =

1

2
arctanx2 + c

Verify:
d

dx

µ
1

2
arctanx2

¶
=
1

2
· 1

x4 + 1
· 2x = x

x4 + 1

(b)

Z
3x sin 2x dx

=
3

4
sin 2x− 3x

2
cos 2x+ c

Verify:
d

dx

µ
3

4
sin 2x− 3x

2
cos 2x

¶
=
3

2
cos 2x− 3

2
cos 2x+ 3x sin 2x

= 3x sin 2x
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(c)

Z
lnx dx = x lnx− x+ c

Verify:
d

dx
(x lnx− x) = lnx+ 1− 1

= lnx

39. Finding the antiderivative,

f(x) = 3ex +
x2

2
+ c.

Since f(0) = 4, we have
4 = f(0) = 3 + c. Therefore,
f(x) = 4 sinx+ 1.

40. Finding the antiderivative,
f(x) = 4 sinx+ c.

Since f(0) = 3, we have 3 = f(0) = c.
Therefore,
f(x) = 4 sinx+ 3.

41. Finding the antiderivative of f 00 gives
f 0(x) = 12x+ c1.

Since f 0(0) = 2, we have 2 = f 0(0) =
c1 and therefore
f 0(x) = 12x+ 2.

Finding the antiderivative of f 0(x)
gives
f(x) = 6x2 + 2x+ c2.

Since f(0) = 3, we have 3 = f(0) = c2
and
f(x) = 6x2 + 2x+ 3.

42. Finding the antiderivative of f 00 gives
f 0(x) = x2 + c1.

Since f 0(0) = −3, we have
−3 = f 0(0) = c1 and therefore
f 0(x) = x2 − 3.
Finding the antiderivative of f 0(x)
gives

f(x) =
1

3
x3 − 3x+ c2.

Since f(0) = 2, we have 2 = f(0) = c2

and f(x) =
1

3
x3 − 3x+ 2.

43. Taking antiderivatives,
f 00(x) = 3 sinx+ 4x2

f 0(x) = −3 cosx+ 4
3
x3 + c1

f(x) = −3 sinx+ 1
3
x4 + c1x+ c2.

44. Taking antiderivatives,
f 00(x) = x1/2 − 2 cosx
f 0(x) =

2

3
x3/2 − 2 sinx+ c1

f(x) =
4

15
x5/2 + 2 cosx+ c1x+ c2.

45. Taking antiderivatives,
f 000(x) = 4− 2/x3
f 00(x) = 4x+ x−2 + c1
f 0(x) = 2x2 − x−1 + c1x+ c2

f(x) =
2

3
x3 − ln |x|+ c1

2
x2 + c2x+ c3

46. Taking antiderivatives,
f 000(x) = sinx− ex

f 00(x) = − cosx− ex + c1
f 0(x) = − sinx− ex + c1x+ c2

f(x) = cosx− ex +
c1
2
x2 + c2x+ c3

47. Position is the antiderivative of veloc-
ity,
s(t) = 3t− 6t2 + c.
Since s(0) = 3, we have c = 3. Thus,
s(t) = 3t− 6t2 + 3.

48. Position is the antiderivative of veloc-
ity,
s(t) = −3e−t − 2t+ c.
Since s(0) = 0, we have −3 + c = 0
and therefore c = 3. Thus,
s(t) = −3e−t − 2t+ 3.

49. First we find velocity, which is the
antiderivative of acceleration,
v(t) = −3 cos t+ c1.
Since v(0) = 0 we have
−3 + c1 = 0, c1 = 3 and
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v(t) = −3 cos t+ 3.

Position is the antiderivative of ve-
locity,
s(t) = −3 sin t+ 3t+ c2.
Since s(0) = 4, we have c2 = 4. Thus,
s(t) = −3 sin t+ 3t+ 4.

50. First we find velocity, which is the an-
tiderivative of acceleration,

v(t) =
1

3
t3 + t+ c1.

Since v(0) = 4 we have c1 = 4 and

v(t) =
1

3
t3 + t+ 4.

Position is the antiderivative of ve-
locity,

s(t) =
1

12
t4 +

1

2
t2 + 4t+ c2.

Since s(0) = 0, we have c2 = 0. Thus,

s(t) =
1

12
t4 +

1

2
t2 + 4t.

51. The key is to find the velocity and
position functions. We start with
constant acceleration a, a constant.
Then, v(t) = at + v0 where v0 is
the initial velocity. The initial ve-
locity is 30 miles per hour, but since
our time is in seconds, it is proba-
bly best to work in feet per second
(30mph = 44ft/s). v(t) = at+ 44.

We know that the car accelerates to
50 mph (50mph = 73ft/s) in 4 sec-
onds, so v(4) = 73. Therefore, a · 4 +
44 = 73 and a =

29

4
ft/s

So,

v(t) =
29

4
t+ 44 and

s(t) =
29

8
t2 + 44t+ s0

where s0 is the initial position. We
can assume the the starting position
is s0 = 0 .

Then, s(t) =
29

8
t2 + 44t and the dis-

tance traveled by the car during the
4 seconds is s(4) = 234 feet.

52. The key is to find the velocity and
position functions. We start with
constant acceleration a, a constant.
Then, v(t) = at + v0 where v0 is
the initial velocity. The initial ve-
locity is 60 miles per hour, but since
our time is in seconds, it is proba-
bly best to work in feet per second
(60mph = 88ft/s). v(t) = at+ 88.

We know that the car comes to rest
in 3 seconds, so v(3) = 0. Therefore,
a(3)+88 = 0 and a = −88/3ft/s (the
acceleration should be negative since
the car is actually decelerating.
So,

v(t) = −88
3
t+ 88 and

s(t) = −44
3
t2 + 88t + s0 where s0 is

the initial position. We can assume
the the starting position is s0 = 0.

Then, s(t) = −44
3
t2 + 88t and the

stopping distance is s(3) = 132 feet.

53. There are many correct answers, but
any correct answer will be a vertical
shift of this answer.

y

1

x0
0.5

54. There are many correct answers, but
any correct answer will be a vertical
shift of this answer. f(x) and f 0(x)
are both shown, with f(x) shown in
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bold.

x

3

8

2

6

1

4

2

0
0

-2

-1

-4

-2-3

55. All functions that have the deriva-
tive shown in Exercise 53 are vertical
translations of the graph given as the
answer for Exercise 53.

56. There is not one correct answer here.
The different answers can be more
than just vertical translations of each
other—it depends on what the graph
of f 0(x) is used. In any case, one pos-
sibility is shown here (with a possi-
ble graph of f 0(x) shown also, f(x) is
shown in bold).

x

-2 320-1

10

5

-5

-10

1-3
0

57. To estimate the acceleration over each
interval, we estimate v0(t) by comput-
ing the slope of the tangent lines. For
example, for the interval [0, 0.5]:

a ≈ v(0.5)− v(0)

0.5− 0 = −31.6 m/s2.
Notice, acceleration should be nega-
tive since the object is falling.

To estimate the distance traveled over
the interval, we estimate the veloc-
ity and multiply by the time (distance

is rate times time). For an estimate
for the velocity, we will use the aver-
age of the velocities at the endpoints.
For example, for the interval [0, 0.5],
the time interval is 0.5 and the ve-
locity is −11.9. Therefore the posi-
tion changed is (−11.9)(0.5) = −5.95
meters. The distance traveled will be
5.95 meters (distance should be posi-
tive).

Interval Accel Dist

[0.0, 0.5] −31.6 5.95
[0.5, 1.0] −24.2 12.925
[1.0, 1.5] −11.6 17.4
[1.5, 2.0] −3.6 19.3

58. To estimate the acceleration over each
interval, we estimate v0(t) by comput-
ing the slope of the tangent lines. For
example, for the interval [0, 1.0]:

a ≈ v(1.0)− v(0)

1.0− 0 = −9.8 m/s2.

Notice, acceleration should be nega-
tive since the object is falling.

To estimate the distance traveled over
the interval, we estimate the velocity
and multiply by the time (distance is
rate times time). For an estimate for
the velocity, we will use the average
of the velocities at the endpoints. For
example, for the interval [0, 1.0], the
time interval is 1.0 and the velocity is
−4.9. Therefore the position changed
is (−4.9)(1.0) = −4.9 meters. The
distance traveled will be 4.9 meters
(distance should be positive).

Interval Accel Dist

[0.0, 1.0] −9.8 4.9
[1.0, 2.0] −8.8 14.2
[2.0, 3.0] −6.3 21.75
[3.0, 4.0] −3.6 26.7
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59. To estimate the speed over the inter-
val, we first approximate the acceler-
ation over the interval by averaging
the acceleration at the endpoint of the
interval. Then, the velocity will be
the acceleration times the length of
time. The slope of the tangent lines.
For example, for the interval [0, 0.5]
the average acceleration is −0.9 and
v(0.5) = 70 + (−0.9)(0.5) = 69.55.

And, the distance traveled is the
speed times the length of time. For
the time t = 0.5, the distance would

be
70 + 69.55

2
× 0.5 ≈ 34.89 meters.

Time Speed Dist

0 70 0
0.5 69.55 34.89
1.0 70.3 69.85
1.5 70.35 105.01
2.0 70.65 104.26

60. To estimate the speed over the inter-
val, we first approximate the acceler-
ation over the interval by averaging
the acceleration at the endpoint of the
interval. Then, the velocity will be
the acceleration times the length of
time. the slope of the tangent lines.
For example, for the interval [0.0, 0.5]
the average acceleration is −0.8 and
v(0.5) = 20 + (−0.8)(.5) = 19.6. Of
course, speed is the absolute value of
the velocity.

And, the distance traveled is the av-
erage speed times the length of time.
For the time t = 0.5, the distance

would be
20 + 19.6

2
× 0.5 = 9.9 me-

ters.

Time Speed Dist

0 20 0
0.5 19.6 9.9
1.0 17.925 19.281
1.5 16.5 27.888
2.0 16.125 34.044

61. We start by taking antiderivatives:
f 0(x) = x2/2− x+ c1
f(x) = x3/6− x2/2 + c1x+ c2.

Now, we use the data that we are
given. We know that f(1) = 2 and
f 0(1) = 3, which gives us
3 = f 0(1) = 1/2− 1 + c1,
and
1 = f(1) = 1/6− 1/2 + c1 + c2.

Therefore c1 = 7/2 and c2 = −13/6
and the function is

f(x) =
x3

6
− x2

2
+
7x

2
− 13
6
.

62. We start by taking antiderivatives:
f 0(x) = 3x2 + 4x+ c1
f(x) = x3 + 2x2 + c1x+ c2.

Now, we use the data that we are
given. We know that f(−1) = 1 and
f 0(−1) = 2, which gives us
2 = f 0(−1) = −1 + c1,
and
1 = f(−1) = 1− c1 + c2.

Therefore c1 = 3 and c2 = 3 and
the function is
f(x) = x3 + 2x2 + 3x− 3.

63. Let u = x2; then du = 2xdx.Z
2x cosx2 dx =

Z
cosu du

= sinu+ c
= sinx2 + c

64.
d

dx

£
(x3 + 2)3/2

¤
=
9

2
x2(x3 + 2)1/2
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Therefore,Z
x2
√
x3 + 2 dx =

2

9
(x3 + 2)3/2 + c

65.
d

dx

£
2x sin 2x+ x22 cos 2x

¤
= 2(x sin 2x+ x2 cos 2x)

Therefore,Z ¡
x sin 2x+ x2 cos 2x

¢
dx

=
1

2
x2 sin 2x+ c

66.
d

dx

x2

e3x
=
2xe3x − 3x2e3x

e6x

Therefore,Z
2xe3x − 3x2e3x

e6x
dx =

x2

e3x
+ c

67.

Z
x cos(x2)p
sin(x2)

dx =
p
sin(x2) + c

68.
d

dx

³√
x2 + 1 sinx

´
=
√
x2 + 1 cosx+ x(x2 + 1)−1/2 sinx

Therefore,Z µ√
x2 + 1 cosx+

x√
x2 + 1

sinx

¶
dx

=
√
x2 + 1 sinx+ c

69.

Z −1√
1− x2

dx = cos−1(x) + c1Z −1√
1− x2

dx = − sin−1(x) + c2

Therefore,
cos−1 x+ c1 = − sin−1 x+ c2

Therefore,
sin−1 x+ cos−1 x = constant

To find the value of the constant,
let x be any convenient value. Sup-
pose x = 0; then sin−1 0 = 0 and
cos−1 0 = π/2, so

sin−1 x+ cos−1 x =
π

2

70. To derive these formulas, all that
needs to be done is to take the deriva-
tives to see that the integrals are cor-
rect:

d

dx
(tanx) = sec2 x

d

dx
(secx) = secx tanx

71. To derive these formulas, all that
needs to be done is to take the deriva-
tives to see that the integrals are cor-
rect:

d

dx
(ex) = ex

d

dx

¡−e−x¢ = e−x

72. a)

Z
1

kx
dx =

1

k

Z
1

x
dx

=
1

k
ln |x|+ c1

b)

Z
1

kx
dx =

1

k

Z
k

kx
dx

=
1

k
ln |kx|+ c2

Because

1

k
ln |kx| = 1

k
(ln |k|+ ln |x|)

=
1

k
ln |x|+ 1

k
ln |k| = 1

k
ln |x|+ c

The two antiderivatives are both cor-
rect.

4.2 Sums And Sigma

Notation

1.
50X
i=1

i2 =
(50)(51)(101)

6
= 42, 925

2.

Ã
50X
i=1

i

!2
=

µ
50(51)

2

¶2
= 1, 625, 625
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3.
10X
i=1

√
i

= 1 +
√
2 +
√
3 +
√
4 +
√
5 +
√
6

+
√
7 +
√
8 +
√
9 +
√
10

≈ 22.47

4.

vuut 10X
i=1

i =

r
10(11)

2
=
√
55

5.
6X

i=1

3i2 = 3+ 12 + 27 + 48 + 75 + 108

= 273

6.
7X

i=3

i2 + i = 10 + 20 + 30 + 42 + 56

= 158

7.
10X
i=6

(4i+ 2)

= (4(6) + 2)+(4(7) + 2)+(4(8) + 2)
+ (4(9) + 2) + (4(10) + 2)
= 26 + 30 + 34 + 38 + 42
= 170

8.
8X

i=6

(i2 + 2)

= (62 + 2) + (72 + 2) + (82 + 2)
= 38 + 51 + 66
= 155

9.
70X
i=1

(3i− 1)

= 3 ·
70X
i=1

i− 70

= 3 · 70(71)
2
− 70

= 7, 385

10.
45X
i=1

(3i− 4)

= 3
45X
i=1

i− 4
45X
i=1

1

= 3

µ
45(46)

2

¶
− 4(45)

= 2925

11.
40X
i=1

(4− i2)

= 160−
40X
i=1

i2

= 160− (40)(41)(81)
6

= 160− 22, 140
= −21, 980

12.
50X
i=1

(8− i)

= 8
50X
i=1

1−
50X
i=1

i

= 8(50)− 50(51)
2

= −875

13.
100X
i=1

(i2 − 3i+ 2)

=
100X
i=1

i2 − 3 ·
100X
i=1

i+ 200

=
(100)(101)(201)

6
−3· 100(101)

2
+200

= 338, 350− 15, 150 + 200
= 323, 400

14.
140X
i=1

i2 + 2i− 4

=
140X
i=1

i2 + 2
140X
i=1

i− 4
140X
i=1

1

=
140(141)(281)

6
+ 2

µ
140(141)

2

¶
− 4(140)
= 943670

15.
200X
i=1

(4− 3i− i2)

= 800− 3 ·
200X
i=1

i−
200X
i=1

i2
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= 800−3·200(201)
2

− (200)(201)(401)
6

= −2, 746, 200

16.
250X
i=1

(i2 + 8)

=
250X
i=1

i2 + 8 · 250

=
(250)(251)(501)

6
+ 2, 000

= 5, 241, 625

17.
nX
i=0

(i2 − 3)

=
nX
i=0

i2 +
nX
i=0

(−3)

= 0 +
nX
i=1

i2 + (n+ 1)(−3)

=
n(n+ 1)(2n+ 1)

6
− 3(n+ 1)

=
(n+ 1)(2n2 + n− 18)

6

18.
nX
i=0

(i2 + 5)

=
nX
i=1

i2 + 5n+ 5

=
n(n+ 1)(2n+ 1)

6
+ 5n+ 5

19.
nX
i=1

1

n

"µ
i

n

¶2
+ 2

µ
i

n

¶#

=
1

n

"
nX
i=1

i2

n2
+ 2

nX
i=1

i

n

#

=
1

n

"
1

n2

nX
i=1

i2 +
2

n

nX
i=1

i

#

=
1

n

∙
1

n2

µ
n(n+ 1)(2n+ 1)

6

¶
+
2

n

µ
n(n+ 1)

2

¶¸

=
n(n+ 1)(2n+ 1)

6n3
+

n(n+ 1)

n2

lim
n→∞

nX
i=1

1

n

"µ
i

n

¶2
+ 2

µ
i

n

¶#

= lim
n→∞

∙
n(n+ 1)(2n+ 1)

6n3
+

n(n+ 1)

n2

¸
=
2

6
+ 1 =

4

3

20.
nX
i=1

1

n

"µ
i

n

¶2
− 5

µ
i

n

¶#

=
1

n

"
nX
i=1

i2

n2
− 5

nX
i=1

i

n

#

=
1

n

"
1

n2

nX
i=1

i2 − 5
n

nX
i=1

i

#

=
1

n

∙
1

n2

µ
n(n+ 1)(2n+ 1)

6

¶
−5
n

µ
n(n+ 1)

2

¶¸
=

n(n+ 1)(2n+ 1)

6n3
− 5n(n+ 1)

2n2

=
−13n2 − 12n+ 1

6n2

lim
n→∞

nX
i=1

1

n

"µ
i

n

¶2
− 5

µ
i

n

¶#

= lim
n→∞

−13n2 − 12n+ 1
6n2

= lim
n→∞
−13
6
− 12
6n
+

1

6n2

= −13
6

21.
nX
i=1

1

n

"
4

µ
2i

n

¶2
−
µ
2i

n

¶#

=
1

n

"
16

nX
i=1

i2

n2
− 2

nX
i=1

i

n

#

=
1

n

"
16

n2

nX
i=1

i2 − 2
n

nX
i=1

i

#
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=
1

n

∙
16

n2

µ
n(n+ 1)(2n+ 1)

6

¶
−2
n

µ
n(n+ 1)

2

¶¸
=
16n(n+ 1)(2n+ 1)

6n3
− n(n+ 1)

n2

lim
n→∞

nX
i=1

1

n

"
4

µ
2i

n

¶2
−
µ
2i

n

¶#

= lim
n→∞

∙
16n(n+ 1)(2n+ 1)

6n3
− n(n+ 1)

n2

¸
=
16

3
− 1 = 13

3

22.
nX
i=1

1

n

"µ
2i

n

¶2
+ 4

µ
i

n

¶#

=
1

n

"
nX
i=1

4i2

n2
+ 4

nX
i=1

i

n

#

=
1

n

"
4

n2

nX
i=1

i2 +
4

n

nX
i=1

i

#

=
1

n

∙
4

n2

µ
n(n+ 1)(2n+ 1)

6

¶
+
4

n

µ
n(n+ 1)

2

¶¸
=
4n(n+ 1)(2n+ 1)

6n3
+
4n(n+ 1)

2n2

=
10n2 + 12n+ 2

3n2

lim
n→∞

nX
i=1

1

n

"µ
2i

n

¶2
+ 4

µ
i

n

¶#

= lim
n→∞

10n2 + 12n+ 2

3n2

= lim
n→∞

10

3
+
12

3n
+

2

3n2

=
10

3

23.
nX
i=1

f(xi)∆x

=
5X

i=1

(x2i + 4xi) · 0.2

= (0.22 + 4(0.2))(0.2) + . . .
+ (12 + 4)(0.2)

= (0.84)(0.2) + (1.76)(0.2)
+ (2.76)(0.2) + (3.84)(0.2)
+ (5)(0.2)

= 2.84

24.
nX
i=1

f(xi)∆x

=
5X

i=1

(3xi + 5) · 0.4
= (3(0.4) + 5)(0.4) + . . .
+ (3(2) + 5)(0.4)

= (6.2)(0.4) + (7.4)(0.4)
+ (8.6)(0.4) + (9.8)(0.4)
+ (11)(0.4)

= 17.2

25.
nX
i=1

f(xi)∆x

=
10X
i=1

(4x2i − 2) · 0.1

= (4(2.1)2 − 2)(0.1) + . . .
+ (4(3)2 − 2)(0.1)

= (15.64)(0.1) + (17.36)(0.1)
+ (19.16)(0.1) + (21.04)(0.1)
+ (23)(0.1) + (25.04)(0.1)
+ (27.16)(0.1) + (29.36)(0.1)
+ (31.64)(0.1) + (34)(0.1)

= 24.34

26.
nX
i=1

f(xi)∆x

=
10X
i=1

(x3 + 4) · 0.1

= ((2.05)3 + 4)(0.1) + . . .
+ ((2.95)3 + 4)(0.1)

= (202.4375)(0.1)
= 20.24375

27. Distance
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= 50(2) + 60(1) + 70(1/2) + 60(3)
= 375 miles.

28. Distance
= 50(1) + 40(1) + 60(1/2) + 55(3)
= 285 miles.

29. Remember to convert minutes into
hours.
Distance

= 15

µ
1

3

¶
+ 18

µ
1

2

¶
+ 16

µ
1

6

¶
+ 12

µ
2

3

¶
= 24

2

3
miles.

30. Remember to convert minutes into
hours.
Distance

= 12

µ
1

3

¶
+ 14

µ
1

2

¶
+ 18

µ
1

6

¶
+ 15

µ
2

3

¶
= 24 miles.

31. On the time interval [0, 0.25], the esti-
mated velocity is the average velocity
120 + 116

2
= 118 feet per second. We

estimate the distance traveled during
the time interval [0, 0.25] to be
(118)(0.25− 0) = 29.5 feet.
Altogether, the distance traveled is
estimated as
= (236/2)(0.25) + (229/2)(0.25)
+ (223/2)(0.25) + (218/2)(0.25)
+ (214/2)(0.25) + (210/2)(0.25)
+ (207/2)(0.25) + (205/2)(0.25)

= 217.75 feet.

32. On the time interval [0, 0.5], the esti-
mated velocity is the average velocity
10 + 14.9

2
= 12.45 meters per second.

We estimate the distance fallen dur-
ing the time interval [0, 0.5] to be
(12.45)(0.5− 0) = 6.225 meters.
Altogether, the distance fallen (esti-
mated)
= (12.45)(0.5) + (17.35)(0.5)
+ (22.25)(0.5) + (27.15)(0.5)
+ (32.05)(0.5) + (36.95)(0.5)
+ (41.85)(0.5) + (46.75)(0.5)

= 118.4 meters.

33. Want to prove that

nX
i=1

i3 =
n2(n+ 1)2

4

is true for all integers n ≥ 1.
For n = 1, we have

1X
i=1

i3 = 1 =
12(1 + 1)2

4
,

as desired. So the proposition is true
for n = 1.

Next, assume that

kX
i=1

i3 =
k2(k + 1)2

4
,

for some integer k ≥ 1.
In this case, we have by the induction
assumption that for n = k + 1,
nX
i=1

i3 =
k+1X
i=1

i3 =
kX
i=1

i3 + (k + 1)3

=
k2(k + 1)2

4
+ (k + 1)3

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4k + 4)

4

=
(k + 1)2(k + 2)2

4

=
n2(n+ 1)2

4
as desired.
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34. Want to prove that
nX
i=1

i5 =
n2(n+ 1)2(2n2 + 2n− 1)

12

is true for all integers n ≥ 1.
For n = 1, we have

1X
i=1

i3 = 1 =
12(1 + 1)2(2 + 2− 1)

12
,

as desired. So the proposition is true
for n = 1.

Next, assume that

kX
i=1

i5 =
k2(k + 1)2(2k2 + 2k − 1)

12
,

for some integer k ≥ 1.
In this case, we have by the induction
assumption that for n = k + 1,
nX
i=1

i5 =
k+1X
i=1

i5 =
kX
i=1

i5 + (k + 1)5

=
k2(k + 1)2(2k2 + 2k − 1)

12
+(k+1)5

=
k2(k + 1)2(2k2 + 2k − 1) + 12(k + 1)5

12

=
(k + 1)2[k2(2k2 + 2k − 1) + 12(k + 1)3]

12

=
(k + 1)2[2k4 + 14k3 + 35k2 + 36k + 12]

12

=
(k + 1)2(k2 + 4k + 4)(2k2 + 6k + 3)

12

=
n2(n+ 1)2(2n2 + 2n− 1)

12
as desired.

35.
10X
i=1

(i3 − 3i+ 1)

=
10X
i=1

i3 − 3
10X
i=1

i+ 10

=
100(11)2

4
− 310(11)

2
+ 10

= 2, 870

36.
20X
i=1

(i3 + 2i)

=
20X
i=1

i3 + 2
20X
i=1

i

=
400(21)2

4
+ 2

20(21)

2
= 44, 520

37.
100X
i=1

(i5 − 2i2)

=
100X
i=1

i5 − 2
100X
i=1

i2

=
(1002)(1012)[2(1002) + 2(100)− 1]

12

− 220(21)(41)
6

= 171, 707, 655, 800

38.
100X
i=1

(2i5 + 2i+ 1)

= 2
100X
i=1

i3 + 2
100X
i=1

i+ 100

= 2
(1002)(1012)[2(1002) + 2(100)− 1]

12

+ 2 · 100(101)
2

+ 100

= 171, 708, 342, 700

39.
nX
i=1

(cai + dbi) =
nX
i=1

cai +
nX
i=1

dbi

= c
nX
i=1

ai + d
nX
i=1

bi

40. When n = 0, a =
a− ar

1− r
.

Assume the formula holds for n =
k − 1, which gives

a+ ar + · · · ark−1 = a− ark

1− r
.
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Then for n = k, we have

a+ ar + · · · ark
= a+ ar + · · · ark−1 + ark

=
a− ark

1− r
+ ark

=
a− ark + ark(1− r)

1− r

=
a− ark + ark − ark+1

1− r

=
a− ark+1

1− r

=
a− arn+1

1− r
as desired.

41.
nX
i=1

e6i/n
µ
6

n

¶
=
6

n

nX
i=1

e6i/n

=
6

n

µ
e6/n − e6

1− e6/n

¶
=
6

n

µ
1− e6

1− e6/n
− 1
¶

=
6

n

1− e6

1− e6/n
− 6

n

Now lim
n→∞

6

n
= 0, and

lim
n→∞

6

n

1− e6

1− e6/n

= 6(1− e6) lim
n→∞

1/n

1− e6/n

= 6(1− e6) lim
n→∞

1

−6e6/n
= e6 − 1,

Thus lim
n→∞

nX
i=1

e6i/n
6

n
= e6 − 1.

42.
nX
i=1

e(2i)/n
2

n

=
2

n

µ
e2/n − e2

1− e2/n

¶

=
2

n

µ
1− e2

1− e2/n
− 1
¶

=
2

n

1− e2

1− e2/n
− 2

n

Now lim
n→∞

2

n
= 0, and

lim
n→∞

2

n

1− e2

1− e2/n

= 2(1− e2) lim
n→∞

1/n

1− e2/n

= 2(1− e2) lim
n→∞

1

−2e2/n
= e62− 1,
Thus

lim
n→∞

nX
i=1

e2i/n
2

n
= e2 − 1.

4.3 Area

1. a) Evaluation points:
0.125, 0.375, 0.625, 0.875.
Notice that ∆x = 0.25.

A4 = [f(0.125) + f(0.375) + f(0.625)
+ f(0.875)](0.25)

= [(0.125)2 + 1 + (0.375)2 + 1
+ (0.625)2 + 1 + (0.875)2 + 1](0.5)

= 1.38125.

x

0.60.4 1.20.8

0.5

0

2

0.2
0

1.5

1

1

b) Evaluation points:
0.25, 0.75, 1.25, 1.75.
Notice that ∆x = 0.5.

A4 = [f(0.25) + f(0.75) + f(1.25)
+ f(1.75)](0.5)
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= [(0.25)2+1+(0.75)2+1+(1.25)2+1
+ (1.75)2 + 1](0.5)

= 4.625.

0 1

7

2

6

5

4

3

2

1

0

x

2.51.50.5-0.5

2. a) Evaluation points:
1.125, 1.375, 1.625, 1.875.
Notice that ∆x = 0.25.

A4 = [f(1.125) + f(1.375) + f(1.625)
+ f(1.875)](0.25)

= [(1.125)3 − 1 + (1.375)3 − 1
+ (1.625)3− 1 + (1.875)3− 1](0.25)

= 2.7265625.

2

6

x

21.81.61.41.2

4

7

5

0

3

1

1

b) Evaluation points:
1.25, 1.75, 2.25, 2.75.
Notice that ∆x = 0.5.

A4 = [f(1.25) + f(1.75) + f(2.25)
+ f(2.75)](0.5)

= [(1.25)3 − 1 + (1.75)3 − 1
+ (2.25)3 − 1 + (2.75)3 − 1](0.5)

= 17.75.

2 2.51.51

x

0

30

25

20

15

10

5

3

3. a) Evaluation points:
π/8, 3π/8, 5π/8, 7π/8.
Notice that ∆x = π/4.

A4 = [f(π/8) + f(3π/8) + f(5π/8)
+ f(7π/8)](π/4)

= [sin(π/8) + sin(3π/8) + sin(5π/8)
+ sin(7π/8)](π/4)

= 2.05234.

0

x

32.52

0.8

1.510 0.5

0.4

0.2

1

0.6

b) Evaluation points:
π/16, 3π/16, 5π/16, 7π/16, 9π/16,
11π/16, 13π/16, 15π/16.
Notice that ∆x = π/8.

A4 = [f(π/16)+f(3π/16)+f(5π/16)
+f(7π/16)+f(9π/16)+f(11π/16)
+ f(13π/16) + f(15π/16)](π/8)

= [sin(π/16)+sin(3π/16)+sin(5π/16)
+ sin(7π/16) + sin(9π/16)
+ sin(11π/16) + sin(13π/16)
+ sin(15π/16)](π/8)

= 2.0129.
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0.8

0.5 2.5
0

3

0.4

0.6

1

1.5

0.2

x

210

4. a) Evaluation points:
−0.75, −0.25, 0.25, 0.75.
Notice that ∆x = 0.5.

A4 = [f(−0.75) + f(−0.25) + f(0.25)
+ f(0.75)](0.5)

= [4− (−0.75)2 + 4− (−0.25)2 + 4
− (0.25)2 + 4− (0.75)2](0.5)

= 7.375.

x

0.50-0.5

3

1-1

1

4

0

2

b) Evaluation points:
−2.75, −2.25, −1.75, −1.25.
Notice that ∆x = 0.5.

A4 = [f(−2.75)+f(−2.25)+f(−1.75)
+ f(−1.25)](0.5)

= [4− (−2.75)2 + 4− (−2.25)2 + 4
− (−1.75)2 + 4− (−1.25)2](0.5)

= −0.625.

-6

-3 -2.5 -2

-4

-1.5

x

0

-2

2

-1

5. a) There are 16 rectangles and the
evaluation points are given by ci =
i∆x where i is from 0 to 15.

A16 = ∆x
15X
i=0

f(ci)

=
1

16

15X
i=0

"µ
i

16

¶2
+ 1

#
≈ 1.3027

b) There are 16 rectangles and the
evaluation points are given by ci =
i∆x+ ∆x

2
where i is from 0 to 15.

A16 = ∆x
15X
i=0

f(ci)

=
1

16

15X
i=0

"µ
i

16
+
1

32

¶2
+ 1

#
≈ 1.3330
c) There are 16 rectangles and the
evaluation points are given by ci =
i∆x+∆x where i is from 0 to 15.

A16 = ∆x
15X
i=0

f(ci)

=
1

16

15X
i=0

"µ
i

16
+
1

16

¶2
+ 1

#
≈ 1.3652

6. a) There are 16 rectangles and the
evaluation points are given by ci =
i∆x where i is from 0 to 15.

A16 = ∆x
15X
i=0

f(ci)
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=
1

8

15X
i=0

"µ
i

8

¶2
+ 1

#
≈ 4.4219

b) There are 16 rectangles and the
evaluation points are given by ci =
i∆x+ ∆x

2
where i is from 0 to 15.

A16 = ∆x
15X
i=0

f(ci)

=
1

8

15X
i=0

"µ
i

8
+
1

16

¶2
+ 1

#
≈ 4.6640

c) There are 16 rectangles and the
evaluation points are given by ci =
i∆x+∆x where i is from 0 to 15.

A16 = ∆x
15X
i=0

f(ci)

=
1

8

15X
i=0

"µ
i

8
+
1

8

¶2
+ 1

#
≈ 4.9219

7. a) There are 16 rectangles and the
evaluation points are the left end-
points which are given by
ci = 1 + i∆x where i is from 0 to 15.

A16 = ∆x
15X
i=0

f(ci)

=
3

16

15X
i=0

r
1 +

3i

16
+ 2 ≈ 6.2663

b) There are 16 rectangles and the
evaluation points are the midpoints
which are given by
ci = 1 + i∆x+∆x/2 where i is from
0 to 15.

A16 = ∆x
15X
i=0

f(ci)

=
3

16

15X
i=0

r
1 +

3i

16
+
3

32
+ 2

≈ 6.3340
c) There are 16 rectangles and the
evaluation points are the right end-
points which are given by
ci = 1 + i∆x where i is from 1 to 16.

A16 = ∆x
16X
i=1

f(ci)

=
3

16

16X
i=1

r
1 +

3i

16
+ 2 ≈ 6.4009

8. a) There are 16 rectangles and the
evaluation points are the left end-
points which are given by
ci = −1 + i∆x−∆x
where i is from 1 to 16.

A16 = ∆x
16X
i=1

f(ci)

=
1

8

16X
i=1

e−2(−1+
i
8
− 1
8
) ≈ 4.0991

b) There are 16 rectangles and the
evaluation points are the midpoints
which are given by
ci = −1 + i∆x−∆x/2
where i is from 1 to 16.

A16 = ∆x
16X
i=1

f(ci)

=
1

8

16X
i=1

e−2(−1+
i
8
− 1
16
) ≈ 3.6174

c) There are 16 rectangles and the
evaluation points are the right end-
points which are given by
ci = −1 + i∆x where i is from 1 to
16.

A16 = ∆x
16X
i=1

f(ci)

=
1

8

16X
i=1

e−2(−1+
i
8
) ≈ 3.1924

9. a) There are 50 rectangles and the
evaluation points are given by ci =
i∆x where i is from 0 to 49.

A50 = ∆x
50X
i=0

f(ci)

=
π

100

50X
i=0

cos

µ
πi

100

¶
≈ 1.0156.
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b) There are 50 rectangles and the
evaluation points are given by ci =
∆x
2
+ i∆x where i is from 0 to 49.

A50 = ∆x
50X
i=0

f(ci)

=
π

100

50X
i=0

cos

µ
π

200
+

πi

100

¶
≈ 1.00004.
c) There are 50 rectangles and the
evaluation points are given by ci =
∆x+ i∆x where i is from 0 to 49.

A50 = ∆x
50X
i=0

f(ci)

=
π

100

50X
i=0

cos

µ
π

100
+

πi

100

¶
≈ 0.9842.

10. a) There are 100 rectangles and the
evaluation points are left endpoints
which are given by ci = −1+i∆x−∆x
where i is from 1 to 100.

A100 = ∆x
100X
i=1

f(ci)

=
2

100

100X
i=1

"µ
−1 + 2i

100
− 2

100

¶3
− 1
#

≈ −2.02.
b) There are 100 rectangles and the
evaluation points are midpoints which
are given by ci = −1 + i∆x − ∆x/2
where i is from 1 to 100.

A100 = ∆x
100X
i=1

f(ci)

=
2

100

100X
i=1

"µ
−1 + 2i

100
− 1

100

¶3
− 1
#

= −2.
c) There are 100 rectangles and the
evaluation points are right endpoints
which are given by ci = −1 + i∆x
where i is from 1 to 100.

A100 = ∆x
100X
i=1

f(ci)

=
2

100

100X
i=1

"µ
−1 + 2i

100

¶3
− 1
#

≈ −1.98.
11.

n Left Midpoint Right
Endpoint Endpoint

10 10.56 10.56 10.56
50 10.662 10.669 10.662
100 10.6656 10.6672 10.6656
500 10.6666 10.6667 10.6666
1000 10.6667 10.6667 10.6667
5000 10.6667 10.6667 10.6667

12.
n Left Midpoint Right

Endpoint Endpoint

10 0.91940 1.00103 1.07648
50 0.98421 1.00004 1.01563
100 0.99213 1.00001 1.00783
500 0.99843 1.00000 1.00157
1000 0.99921 1.00000 1.00079
5000 0.99984 1.00000 1.00016

13.
n Left Midpoint Right

Endpoint Endpoint

10 15.48000 17.96000 20.68000
50 17.4832 17.9984 18.5232
100 17.7408 17.9996 18.2608
500 17.9480 17.9999 18.0520
1000 17.9740 17.9999 18.0260
5000 17.9948 17.9999 18.0052

14.
n Left Midpoint Right

Endpoint Endpoint

10 −2.20000 −2 −1.80000
50 −2.04000 −2 −1.96000
100 −2.02000 −2 −1.98000
500 −2.00400 −2 −1.99600
1000 −2.00200 −2 −1.99800
5000 −2.00040 −2 −1.99960
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15. ∆x =
1

n
. We will use right endpoints

as evaluation points, xi =
i

n
.

An =
nX
i=1

f(xi)∆x

=
1

n

nX
i=1

"µ
i

n

¶2
+ 1

#
=
1

n3

nX
i=1

i2 + 1

=
1

n3

µ
n(n+ 1)(2n+ 1)

6

¶
+ 1

=
8n2 + 3n+ 1

6n2

Now to compute the exact area, we
take the limit as n→∞:
A = lim

n→∞
An

= lim
n→∞

8n2 + 3n+ 1

6n2

= lim
n→∞

8

6
+
3

6n
+

1

6n2

=
4

3
.

16. ∆x =
1

n
. We will use right endpoints

as evaluation points, xi =
i

n
.

An =
nX
i=1

f(xi)∆x

=
1

n

nX
i=1

"µ
i

n

¶2
+ 3

µ
i

n

¶#

=
1

n3

nX
i=1

i2 +
3

n2

nX
i=1

i

=
1

n3

µ
n(n+ 1)(2n+ 1)

6

¶
+
3

n2

µ
n(n+ 1)

2

¶
=
11n2 + 12n+ 1

6n2

Now to compute the exact area, we

take the limit as n→∞:
A = lim

n→∞
An

= lim
n→∞

11n2 + 12n+ 1

6n2

= lim
n→∞

11

6
+
12

6n
+

1

6n2

=
11

6
.

17. ∆x =
2

n
. We will use right endpoints

as evaluation points, xi = 1 +
2i

n
.

An =
nX
i=1

f(xi)∆x

=
2

n

nX
i=1

2

µ
1 +

2i

n

¶2
+ 1

=
2

n

nX
i=1

µ
8i2

n2
+
8i

n
+ 3

¶

=
16

n3

nX
i=1

i2 +
16

n2

nX
i=1

i+ 6

=
16

n3

µ
n(n+ 1)(2n+ 1)

6

¶
+
16

n2

µ
n(n+ 1)

2

¶
+ 6

=
16n(n+ 1)(2n+ 1)

6n3
+
16n(n+ 1)

2n2

+ 6.

Now to compute the exact area, we
take the limit as n→∞:
A = lim

n→∞
An

= lim
n→∞

µ
16n(n+ 1)(2n+ 1)

6n3

+
16n(n+ 1)

2n2
+ 6

¶
= lim

n→∞
32

6
+
16

2
+ 6

= 19
1

3
.
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18. ∆x =
2

n
. We will use right endpoints

as evaluation points, xi = 1 +
2i

n
.

An =
nX
i=1

f(xi)∆x

=
2

n

nX
i=1

4

µ
1 +

2i

n

¶
+ 2

=
2

n

nX
i=1

8i

n
+ 6

=
16

n2

nX
i=1

i+
12

n

nX
i=1

1

=
16

n2

µ
n(n+ 1)

2

¶
+
12n

n

=
20n+ 8

n
.

Now to compute the exact area, we
take the limit as n→∞:
A = lim

n→∞
An

= lim
n→∞

20n+ 8

n

= lim
n→∞

20 +
8

n
= 20.

19. Using left hand endpoints:
L8 = [f(0.0) + f(0.1) + f(0.2) +
f(0.3) + f(0.4) + f(0.5) + f(0.6) +
f(0.7)](0.1)
= (2.0 + 2.4 + 2.6 + 2.7 + 2.6 + 2.4 +
2.0 + 1.4)(0.1) = 1.81.

Right endpoints:
R8 = [f(0.1) + f(0.2) + f(0.3) +
f(0.4) + f(0.5) + f(0.6) + f(0.7) +
f(0.8)](0.2)
= (2.4 + 2.6 + 2.7 + 2.6 + 2.4 + 2.0 +
1.4 + 0.6)(0.1) = 1.67.

20. Using left hand endpoints:
L8 = [f().0) + f(0.2) + f(0.4) +
f(0.6) + f(0.8) + f(1.0) + f(1.2) +
f(1.4)](0.2)
= (2.0 + 2.2 + 1.6 + 1.4 + 1.6 + 2.0 +
2.2 + 2.4)(0.2) = 3.08.

Right endpoints:
R8 = [f(0.2) + f(0.4) + f(0.6) +
f(0.8) + f(1.0) + f(1.2) + f(1.4) +
f(1.6)](0.2)
= (2.2 + 1.6 + 1.4 + 1.6 + 2.0 + 2.2 +
2.4 + 2.0)(0.2) = 3.08.

21. Using left hand endpoints:
L8 = [f(1.0) + f(1.1) + f(1.2) +
f(1.3) + f(1.4) + f(1.5) + f(1.6) +
f(1.7)](0.1)
= (1.8 + 1.4 + 1.1 + 0.7 + 1.2 + 1.4 +
1.82 + 2.4)(0.1) = 1.182.

Right endpoints:
R8 = [f(1.1) + f(1.2) + f(1.3) +
f(1.4) + f(1.5) + f(1.6) + f(1.7) +
f(1.8)](0.1)
= (1.4+ 1.1+ 0.7+ 1.2+ 1.4+ 1.82+
2.4 + 2.6)(0.1) = 1.262.

22. Using left hand endpoints:
L8 = [f(1.0) + f(1.2) + f(1.4) +
f(1.6) + f(1.8) + f(2.0) + f(2.2) +
f(2.4)](0.2)
= (0.0 + 0.4 + 0.6 + 0.8 + 1.2 + 1.4 +
1.2 + 1.4)(0.2) = 1.40.

Right endpoints:
R8 = [f(1.2) + f(1.4) + f(1.6) +
f(1.8) + f(2.0) + f(2.2) + f(2.4) +
f(2.6)](0.2)
= (0.4 + 0.6 + 0.8 + 1.2 + 1.4 + 1.2 +
1.4 + 1.0)(0.2) = 1.60.

23. Let L, M , and R be the values of the
Riemann sums with left endpoints,
midpoints and right endpoints. Let
A be the area under the curve. Then:
L < M < A < R.
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24. Let L, M , and R be the values of the
Riemann sums with left endpoints,
midpoints and right endpoints. Let
A be the area under the curve. Then:
L < A < M < R.
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200
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25. Let L, M , and R be the values of the
Riemann sums with left endpoints,
midpoints and right endpoints. Let
A be the area under the curve. Then:
R < A < M < L.

0.02

x

0.12

2
0

0.1

0.08

42.5

0.06

0.04

3 3.5

26. Let L, M , and R be the values of the
Riemann sums with left endpoints,
midpoints and right endpoints. Let
A be the area under the curve. Then:

R < A < M < L.

32.5

50

21.5

x

1

250

200

150

100

0

27. There are many possible answers
here. One possibility is to use x = 1/6
on [0, 0.5] and x = 1/2 on [0.5, 1].

28. There are many possible answers
here. One possibility is to use x = 1/4
on [0, 0.5] and x = 25/36 on [0.5, 1].

29. We subdivide the interval [a, b] into n
equal subintervals. If you are located
at a + (b − a)/n (the first right end-
point), then each step of distance ∆x
takes you to a new right endpoint. To
arrive at the i-th right endpoint, you
have to take (i− 1) steps to the right
of distance ∆x. Therefore,
ci = a+(b−a)/n+(i−1)∆x = a+i∆x.

30. We subdivide the interval [a, b] into
n equal subintervals. If you are lo-
cated at a (the first left endpoint),
then each step of distance ∆x takes
you to a new left endpoint. To arrive
at the i-th left endpoint, you have to
take (i − 1) steps to the right of dis-
tance ∆x. Therefore,
ci = a+ (i− 1)∆x.

31. We subdivide the interval [a, b] into n
equal subintervals. The first evalua-
tion point is a+∆x/2. From this eval-
uation point, each step of distance∆x
takes you to a new evaluation point.
To arrive at the i-th evaluation point,
you have to take (i − 1) steps to the
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right of distance ∆x. Therefore,
ci = a+∆x/2 + (i− 1)∆x
= a+ (i− 1/2)∆x, for i = 1, . . . , n.

32. We subdivide the interval [a, b] into n
equal subintervals. The first evalua-
tion point is a+∆x/3. From this eval-
uation point, each step of distance∆x
takes you to a new evaluation point.
To arrive at the i-th evaluation point,
you have to take (i − 1) steps to the
right of distance ∆x. Therefore,
ci = a+∆x/3 + (i− 1)∆x
= a+ (i− 2/3)∆x, for i = 1, . . . , n.

33. A ≈ (0.2 − 0.1)(0.002) + (0.3 −
0.2)(0.004)+(0.4−0.3)(0.008)+(0.5−
0.4)(0.014)+(0.6−0.5)(0.026)+(0.7−
0.6)(0.048)+(0.8−0.7)(0.085)+(0.9−
0.8)(0.144) + (0.95 − 0.9)(0.265) +
(0.98 − 0.95)(0.398) + (0.99 −
0.98)(0.568)+(1−0.99)(0.736)+1/2 ·
[(0.1− 0)(0.002)
+ (0.2 − 0.1)(0.004 − 0.002) +
(0.3 − 0.2)(0.008 − 0.004) + (0.4 −
0.3)(0.014−0.008)+(0.5−0.4)(0.026−
0.014) + (0.6 − 0.5)(0.048 − 0.026) +
(0.7 − 0.6)(0.085 − 0.048) + (0.8 −
0.7)(0.144−0.085)+(0.9−0.8)(0.265−
0.144) + (0.95 − 0.9)(0.398 −
0.265) + (0.98 − 0.95)(0.568 −
0.398) + (0.99 − 0.98)(0.736 −
0.568) (1− 0.99)(1− 0.736)]
≈ 0.092615
The Lorentz curve looks like:

0.6

10.80.60.4

1

0.2

0.8

0.4

0.2

0

34. Obviously G = A1/A2 is greater or
equal to 0. From the above figure we
see that the Lorentz curve is below
the diagonal line y = x on the inter-
val [0, 1], hence the areaA1 ≤ the area
A2.

Furthermore, A2 = the area of
the triangle formed by the points
(0, 0), (1, 0) and (1, 1), hence equal to
1/2.

Now G = A1/A2 = 2A1. Using
the date in Exercise 33, G ≈ 2 ·
0.092615 = 0.185230.

35. U4 =
2

4

4X
i=1

µ
i

2

¶2
=
1

8

4X
i=1

i2 =
1

8

£
12 + 22 + 32 + 42

¤
=
30

8
= 3.75

L4 =
2

4

4X
i=1

µ
i− 1
2

¶2
=
1

8

4X
i=1

i2 =
1

8

£
02 + 12 + 22 + 32

¤
=
14

8
= 1.75

36. The function f(x) = x2 is symmetric
on the two intervals [−2, 0] and [0, 2],
so the upper sum U8 is just double
the value of U4 as calculated in Exer-
cise 35, and the same is for L8. The
answers are
U8 = 2·3.75 = 7.5, L8 = 2·1.75 = 3.5.

37. a) Un =
2

n

nX
i=1

µ
2i

n

¶2
=

µ
2

n

¶3 nX
i=1

i2

=

µ
2

n

¶3
n(n+ 1)(2n+ 1)

6
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=
4

3

n(n+ 1)(2n+ 1)

n3

=
4

3

µ
1 +

1

n

¶µ
2 +

1

n

¶
lim
n→∞

Un =
4

3
(2) =

8

3

b) Ln =
2

n

nX
i=1

µ
2(i− 1)

n

¶2
=

µ
2

n

¶3 nX
i=1

(i− 1)2

=

µ
2

n

¶3 n−1X
i=1

i2

=

µ
2

n

¶3
(n− 1)(n)(2n− 1)

6

=
4

3

(n− 1)(n)(2n− 1)
n3

=
4

3

µ
1− 1

n

¶µ
2− 1

n

¶
lim
n→∞

Ln =
4

3
(2) =

8

3

38. a) Un =
1

n

nX
i=1

µ
− i

n

¶2
=

µ
1

n

¶3 nX
i=1

i2

=

µ
1

n

¶3
n(n+ 1)(2n+ 1)

6

=
1

6

n(n+ 1)(2n+ 1)

n3

=
1

6

µ
1 +

1

n

¶µ
2 +

1

n

¶
lim
n→∞

Un =
1

3

b) Ln =
1

n

nX
i=1

µ
−1 + i

n

¶2
=

µ
1

n

¶3 nX
i=1

(i− 1)2

=

µ
1

n

¶3 n−1X
i=1

i2

=

µ
1

n

¶3
(n− 1)(n)(2n− 1)

6

=
1

6

(n− 1)(n)(2n− 1)
n3

=
1

6

µ
1− 1

n

¶µ
2− 1

n

¶
lim
n→∞

Ln =
1

3

39. a) Un =
2

n

nX
i=1

"µ
0 +

2

n
i

¶3
+ 1

#

=
2

n

nX
i=1

"µ
2i

n

¶3
+ 1

#

=

µ
2

n

¶4 nX
i=1

i3 +
nX
i=1

1

=
24

n4

∙
n2(n+ 1)2

4
+
2

n
(n)

¸
=
4(n+ 1)2

n2
+ 2

=
4(n2 + 2n+ 1)

n2
+ 2

= 4

µ
1 +

2

n
+
1

n2

¶
+ 2

= 6 +
8

n
+
4

n2

lim
n→∞

Un = 6

b) Ln =
2

n

n−1X
i=0

"µ
0 +

2

n
i

¶3
+ 1

#

=
2

n

n−1X
i=0

"µ
2i

n

¶3
+ 1

#

=

µ
2

n

¶4 n−1X
i=0

i3 +
nX
i=1

1

=
24

n4

∙
(n− 1)2n2

4
+
2

n
(n)

¸



4.4 THE DEFINITE INTEGRAL 291

=
4(n− 1)2

n2
+ 2

=
4(n2 − 2n+ 1)

n2
+ 2

= 4

µ
1− 2

n
+
1

n2

¶
+ 2

= 6− 8
n
+
4

n2

lim
n→∞

Ln = 6

40. a) Un =
1

n

n−1X
i=0

"µ
i

n

¶2
− 2

µ
i

n

¶#

=
1

n3

n−1X
i=1

i2 − 2

n2

n−1X
i=1

i

=
(n− 1)n(2n− 1)

6n3
− 2(n− 1)n

2n2

=
(n− 1)(−4n− 1)

6n2

lim
n→∞

Un = −2
3

b) Ln =
1

n

nX
i=1

"µ
i

n

¶2
− 2

µ
i

n

¶#

=
1

n3

nX
i=1

i2 − 2

n2

nX
i=1

i

=
n(n+ 1)(2n+ 1)

6n3
− 2(n+ 1)n

2n2

=
(n+ 1)(−4n+ 1)

6n2

lim
n→∞

Ln = −2
3

4.4 The Definite Integral

1.

Z 3

0

(x3 + x) dx

=
nX
i=1

(c3i + ci)∆x =
nX
i=1

(c3i + ci) · 3
n
,

ci =
xi + xi−1

2
, xi =

3i

n

n ≥ 20 =⇒ Riemann sum ≈ 24.65

2.

Z 3

0

√
x2 + 1 dx

=
nX
i=1

q
c2i + 1∆x =

nX
i=1

q
c2i + 1

µ
3

n

¶
,

ci =
xi + xi−1

2
, xi =

3i

n

n ≥ 20 =⇒ Riemann sum ≈ 5.65

3.

Z π

0

sinx2 dx

=
nX
i=1

sin c2i∆x =
nX
i=1

sin c2i

³π
n

´
,

ci =
xi + xi−1

2
, xi =

iπ

n

n ≥ 4 =⇒ Riemann sum ≈ 0.80

4.

Z 2

−2
e−x

2

dx

=
nX
i=1

e−c
2
i∆x =

nX
i=1

e−c
2
i

µ
4

n

¶
,

ci =
xi + xi−1

2
, xi = −2 + 4i

n

n ≥ 4 =⇒ Riemann sum ≈ 1.76

5. For n rectangles, ∆x =
1

n
, xi = i∆x.

Rn =
nX
i=1

f(xi) ∆x

=
nX
i=1

2xi ∆x =
1

n

nX
i=1

2

µ
i

n

¶

=
2

n2

nX
i=1

i =
2

n2

µ
n(n+ 1)

2

¶
=
(n+ 1)

n

To compute the value of the integral,
we take the limit as n→∞,Z 2

1

2x dx = lim
n→∞

Rn



292 CHAPTER 4 INTEGRATION

= lim
n→∞

(n+ 1)

n
= 1

6. For n rectangles, ∆x =
1

n
, xi =

1 + i∆x.

Rn =
nX
i=1

f(xi) ∆x

=
nX
i=1

2xi ∆x =
1

n

nX
i=1

2

µ
1 +

i

n

¶

=
2

n

nX
i=1

1 +
2

n2

nX
i=1

i

=
2

n
(n) +

2

n2

µ
n(n+ 1)

2

¶
= 2 +

(n+ 1)

n
To compute the value of the integral,
we take the limit as n→∞,Z 2

1

2x dx = lim
n→∞

Rn

= lim
n→∞

2 +
(n+ 1)

n
= 2 + 1 = 3

7. For n rectangles, ∆x = 2/n,
xi = i∆x = 2i/n.

Rn =
nX
i=1

f(xi) ∆x

=
nX
i=1

(x2i ) ∆x =
2

n

nX
i=1

2

µ
2i

n

¶2
=
2

n

nX
i=1

4i2

n2
=
8

n3

nX
i=1

i2

=
8

n3

µ
n(n+ 1)(2n+ 1)

6

¶
=
4(n+ 1)(2n+ 1)

3n2

To compute the value of the integral,
we take the limit as n→∞,Z 3

0

(x2 + 1) dx = lim
n→∞

Rn

= lim
n→∞

4(n+ 1)(2n+ 1)

3n2
=
8

3

8. For n rectangles, ∆x = 3/n,
xi = i∆x = 3i/n.

Rn =
nX
i=1

f(xi) ∆x

=
nX
i=1

(x2i+1) ∆x =
3

n

nX
i=1

2

µ
3i

n

¶2
+1

=
3

n

nX
i=1

18i2

n2
+ 1

=
54

n3

nX
i=1

i2 +
3

n

nX
i=1

1

=
54

n3

µ
n(n+ 1)(2n+ 1)

6

¶
+

µ
3

n

¶
n

=
9(n+ 1)(2n+ 1)

n2
+ 3

To compute the value of the integral,
we take the limit as n→∞,Z 3

0

(x2 + 1) dx = lim
n→∞

Rn

= lim
n→∞

9(n+ 1)(2n+ 1)

n2
+ 3

= 9 + 3 = 12

9. For n rectangles, ∆x = 2/n,
xi = 1 + i∆x = 1 + 2i/n

Rn =
nX
i=1

f(xi) ∆x

=
nX
i=1

(x2i − 3) ∆x

=
2

n

nX
i=1

"µ
1 +

2i

n

¶2
− 3
#

=
nX
i=1

µ
8i

n2
+
8i2

n3
− 4

n

¶
=
8n(n+ 1)

2n2
+
8n(n+ 1)(2n+ 1)

6n3
− 4

To compute the value of the integral,
we take the limit as n→∞,Z 3

1

(x2 − 3) dx = lim
n→∞

Rn
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=
8

2
+
16

6
− 4 = 8

3

10. For n rectangles, ∆x = 4/n,
xi = −2 + i∆x = −2 + 4i/n

Rn =
nX
i=1

f(xi) ∆x

=
nX
i=1

(x2i − 1) ∆x

=
4

n

nX
i=1

µ
−2 + 4i

n

¶2
− 1

=
4

n

nX
i=1

µ
3− 16i

n
+
16i2

n2

¶

=
12

n

nX
i=1

1− 64
n2

nX
i=1

i+
64

n3

nX
i=1

i2

=

µ
12

n

¶
n− 64

n2

µ
n(n+ 1)

2

¶
+
64

n3

µ
n(n+ 1)(2n+ 1)

6

¶
= 12− 32(n+ 1)

n
+
32(n+ 1)(2n+ 1)

3n2

To compute the value of the integral,
we take the limit as n→∞,Z 2

−2
(x2 − 1) dx = lim

n→∞
Rn

= lim
n→∞

12− 32(n+ 1)
n

+
32(n+ 1)(2n+ 1)

3n2

= 12− 32 + 64
3
=
4

3

11. Notice that the graph of y = 4−x2 is
above the x-axis between x = −2 and
x = 2: Z 2

−2
(4− x2) dx

12. Notice that the graph of y = 4x− x2

is above the x-axis between x = 0 and

x = 4: Z 4

0

(4x− x2) dx

13. Notice that the graph of y = x2− 4 is
below the x-axis between x = −2 and
x = 2. Since we are asked for area
and the area in question is below the
x-axis, we have to be a bit careful.Z 2

−2
−(x2 − 4) dx

14. Notice that the graph of y = x2−4x is
below the x-axis between x = 0 and
x = 4. Since we are asked for area
and the area in question is below the
x-axis, we have to be a bit careful.Z 4

0

−(x2 − 4x) dx

15.

Z π

0

sinx dx

16. −
Z 0

−π/2
sinx dx+

Z π/4

0

sinx dx

17.

¯̄̄̄Z 1

0

(x3 − 3x2 + 2x) dx
¯̄̄̄

+

¯̄̄̄Z 2

1

(x3 − 3x2 + 2x) dx
¯̄̄̄

=

Z 1

0

(x3 − 3x2 + 2x) dx

−
Z 2

1

(x3 − 3x2 + 2x) dx

18.

Z 0

−2
(x3 − 4x) dx−

Z 2

0

(x3 − 4x) dx

+

Z 3

2

(x3 − 4x) dx

19. The total distance is the total area
under the curve whereas the total
displacement is the signed area under
the curve. In this case, from t = 0
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to t = 4, the function is always pos-
itive so the total distance is equal to
the total displacement. This means
we want to compute the definite inte-
gral

R 4
0
40(1 − e−2t) dt. We compute

various right hand sums for different
values of n:

n Rn

10 146.9489200
20 143.7394984
50 141.5635684
100 140.7957790
500 140.1662293
1000 140.0865751

It looks like these are converging to
about 140. So, the total distance
traveled is approximately 140 and the
final position is

s(b) ≈ s(0) + 140 = 0 + 140 = 140.

20. The total distance is the total area
under the curve whereas the total dis-
placement is the signed area under
the curve. In this case, from t = 0
to t = 4, the function is always pos-
itive so the total distance is equal to
the total displacement. This means
we want to compute the definite inte-
gral

R 4
0
30e−t/4 dt. We compute vari-

ous right hand sums for different val-
ues of n:

n Rn

10 72.12494524
20 73.97390774
50 75.09845086
100 75.47582684
500 75.77863788
1000 75.81654616

It looks like these are converging to
about 75.8. So, the total distance
traveled is approximately 75.8 and
the final position is
s(b) ≈ s(0)+75.8 = −1+75.8 = 74.8.

21.

Z 2

0

f(x) dx+

Z 3

2

f(x) dx

=

Z 3

0

f(x) dx

22.

Z 3

0

f(x) dx−
Z 3

2

f(x) dx

=

Z 2

0

f(x) dx

23.

Z 2

0

f(x) dx+

Z 1

2

f(x) dx

=

Z 1

0

f(x) dx

24.

Z 2

−1
f(x) dx+

Z 3

2

f(x) dx

=

Z 3

−1
f(x) dx

25.

3

2

1

2 31

26.

12

8

4

3 421
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27.

1

0 1

28.

8

6

4

2

2-2 0

29. The function f(x) = 3 cosx2 is de-
creasing on [π/3, π/2]. Therefore, on
this interval, the maximum occurs at
the left endpoint and is f(π/3) =
3 cos(π2/9). The minimum occurs at
the right endpoint and is f(π/2) =
3 cos(π2/4).

Using these to estimate the value of
the integral gives the following in-
equality:
π

6
· (3 cos π

2

4
) ≤

Z π/2

π/3

3 cosx2 dx

≤ π

6
· (3 cos π

2

9
)

−1.23 ≤
Z π/2

π/3

3 cosx2 dx ≤ 0.72

30. The function f(x) = e−x
2
is decreas-

ing on [0, 1/2]. Therefore, on this in-
terval, the maximum occurs at the
left endpoint and is f(0) = 1. The

minimum occurs at the right endpoint
and is f(1/2) = e−1/4.

Using these to estimate the value of
the integral gives the following in-
equality:
1

2
(e−1/4) ≤

Z 1/2

0

e−x
2

dx ≤ 1
2
(1)

0.3894 ≤
Z 1/2

0

e−x
2

dx ≤ 0.5

31. The function f(x) =
√
x2 + 1 is in-

creasing on [0, 2]. Therefore, on this
interval, the maximum occurs at the
right endpoint and is f(2) =

√
5. The

minimum occurs at the left endpoint
and is f(0) = 1.

Using these to estimate the value of
the integral gives the following in-
equality:

(2)(1) ≤
Z 2

0

√
x2 + 1 dx ≤ (2)(

√
5)

2 ≤
Z 2

0

√
x2 + 1 dx ≤ 4.472

32. The function f(x) = 3
x3+2

is decreas-
ing on [−1, 1]. Therefore, on this in-
terval, the maximum occurs at the
left endpoint and is f(−1) = 3. The
minimum occurs at the right endpoint
and is f(1) = 1.

Using these to estimate the value of
the integral gives the following in-
equality:

(2)(1) ≤
Z 1

−1

3

x3 + 2
dx ≤ (2)(3)

2 ≤
Z 1

−1

3

x3 + 2
dx ≤ 6

33. We are looking for a value c, such that

f(c) =
1

2− 0
Z 2

0

3x2 dx

Since

Z 2

0

3x2 dx = 8, we want to find

c so that f(c) = 4 or, 3c2 = 4
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Solving this equation using the

quadratic formula gives c = ± 2√
3

We are interested in the value that

is in the interval [0, 2], so c =
2√
3
.

34. We are looking for a value c, such that

f(c) =
1

1− (−1)
Z 1

−1
(x2 − 2x) dx

Since

Z 1

−1
(x2−2x) dx = 2

3
, we want to

find c so that f(c) = 1
3
or, c2−2c = 1

3

Solving this equation using the

quadratic formula gives c =
3± 2√3

3

We are interested in the value that
is in the interval [−1, 1], so c =
3− 2√3

3
.

35. fave =
1

4

Z 4

0

(2x+ 1) dx

=
1

4
lim
n→∞

nX
i=1

4

n

µ
8i

n
+ 1

¶

= lim
n→∞

nX
i=1

µ
8n(n+ 1)

2n2
+ 1

¶
= 4 + 1 = 5

36. fave =
1

1

Z 1

0

(x2 + 2x) dx

= lim
n→∞

nX
i=1

1

n

µ
i2

n2
+
2i

n

¶
= lim

n→∞

µ
n(n+ 1)(2n+ 1)

6n3
+
2n(n+ 1)

n2

¶
=
2

6
+ 2 =

7

3

37. fave =
1

1− 0
Z 1

0

(x2 − 1) dx

= lim
n→∞

nX
i=1

1

n

"µ
1 +

2i

n

¶2
− 1
#

= lim
n→∞

nX
i=1

1

n

µ
4i

n
+
4i2

n2

¶
= lim

n→∞

µ
4n(n+ 1)

2n2
+
4n(n+ 1)(2n+ 1)

6n3

¶
= 2 +

4

3
=
10

3

38. fave =
1

1

Z 1

0

(2x− 2x2) dx

= lim
n→∞

nX
i=1

1

n

"
2

µ
i

n

¶
− 2

µ
i

n

¶2#

= lim
n→∞

nX
i=1

1

n

µ
2i

n
+
2i2

n2

¶
= lim

n→∞

µ
2n(n+ 1)

2n2
+
2n(n+ 1)(2n+ 1)

6n3

¶
= 1 +

1

3
=
4

3

39. This is just a restatement of the Inte-
gral Mean Value Theorem.

40. Let c =
a+ b

2
. By definition,Z b

a

f(x) dx = lim
n→∞

nX
i=1

f(ci)∆x.

We can choose n to be always even,
so that n = 2m, andZ b

a

f(x) dx = lim
n→∞

nX
i=1

f(ci)∆x

= lim
m→∞

mX
i=1

f(ci)∆x+ lim
m→∞

nX
i=m+1

f(ci)∆x

=

Z c

a

f(x) dx+

Z b

c

f(x) dx

41. Between x = 0 and x = 2, the area
below the x-axis is much less than the
area above the x-axis. ThereforeZ 2

0

f(x) dx > 0



4.4 THE DEFINITE INTEGRAL 297

42. Between x = 0 and x = 2, the area
above the x-axis is much greater than
the area below the x-axis. ThereforeZ 2

0

f(x) dx > 0

43. Between x = 0 and x = 2, the
area below the x-axis is slightly
greater than the area above the x-
axis. ThereforeZ 2

0

f(x) dx < 0

44. Between x = 0 and x = 2, the area
below the x-axis is much greater than
the area above the x-axis. ThereforeZ 2

0

f(x) dx < 0

45. Imagine the interval [0, 2] is divided
into n subintervals. If n is even,
then the point x = 1 must be one
of the boundary points. If we take
the midpoint evaluations to approx-

imate Riemann sums for

Z 2

0

f(x) dx

and

Z 2

0

g(x) dx, all the values f(ci)

and g(ci) are going to be exactly the
same for same index number i, since
the only difference between f(x) and
g(x) occurs at x = 1, and x = 1 is
never going to be one of the ci’s. Thus
the approximated Riemann sums forZ 2

0

f(x) dx and

Z 2

0

g(x) dx are going

to be the same.

46. Let g(x) = |f(x)|.

Let h(x) =

(
f(x) if

R b
a
f(x) dx > 0

−f(x) if
R b
a
f(x) dx < 0

So

Z b

a

h(x) dx =
¯̄̄ Z b

a

f(x) dx
¯̄̄
.

Then for each value of x in [a, b],
h(x) ≤ g(x), hence using Theorem
4.3, Z b

a

h(x) dx ≤
Z b

a

g(x) dx,

which means that¯̄̄ Z b

a

f(x) dx
¯̄̄
≤
Z b

a

|f(x)| dx.

47.

Z 4

0

f(x) dx

=

Z 1

0

f(x) dx+

Z 4

1

f(x) dx

=

Z 1

0

2x dx+

Z 4

1

4 dxZ 1

0

2x dx is the area of a triangle with

base 1 and height 2 and therefore has
area 1

2
(1)(2) = 1.Z 4

1

4 dx is the area of a rectangle with

base 3 and height 4 and therefore has
area (3)(4) = 12.

ThereforeZ 4

0

f(x) dx = 1 + 12 = 13

48.

Z 4

0

f(x) dx

=

Z 2

0

f(x) dx+

Z 4

2

f(x) dx

=

Z 2

0

2 dx+

Z 4

2

3x dxZ 2

0

2 dx is the area of a square with

base 2 and height 2 (it is, after all, a
square) and therefore has area 4.Z 4

2

3x dx is a trapezoid with height 3

and bases 6 and 12 and therefore has
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area (using the formula in the front of
the text) 1

2
(6 + 12)(2) = 18.

ThereforeZ 4

0

f(x) dx = 4 + 18 = 22

49. Since b(t) represents the birthrate (in
births per month), the total number
of births from time t = 0 to t = 12 is
given by the integral

R 12
0

b(t) dt.

Similarly, the total number of deaths
from time t = 0 to t = 12 is given by
the integral

R 12
0

a(t) dt.

Of course, the net change in popula-
tion is the number of birth minus the
number of deaths:

Population Change
= Births−Deaths
=

Z 12

0

b(t) dt−
Z 12

0

a(t) dt

=

Z 12

0

[b(t)− a(t)] dt.

Next we solve the inequality
410− 0.3t > 390 + 0.2t
20 > 0.5t then t < 40 months

Therefore b(t) > a(t) when t < 40
months. The population is increasing
when the birth rate is greater than the
death rate, which is during the first
40 month. After 40 months, the pop-
ulation is decreasing. The population
would reach a maximum at t = 40
months.

50. Since b(t) represents the birthrate (in
births per month), the total number
of births from time t = 0 to t = 12 is
given by the integral

R 12
0

b(t) dt.

Similarly, the total number of deaths
from time t = 0 to t = 12 is given by
the integral

R 12
0

a(t) dt.

Of course, the net change in popula-
tion is the number of birth minus the
number of deaths:

Population Change
= Births−Deaths
=

Z 12

0

b(t) dt−
Z 12

0

a(t) dt

=

Z 12

0

[b(t)− a(t)] dt.

By graphing b(t) and a(t) we see that
their graphs intersect 9 times, at
t ≈ 38.5, 40.1, 44.4, 46.9, 50.2, 53.6,
56.1, 60.5, 61.9

This tells us that we have b(t) > a(t)
on the intervals
(0, 38.5), (40.1, 44.4), (46.9, 50.2),
(53.6, 56.1), (60.5, 61.9)

The maximum population will occur
when t = 50.2.

404

402

396

60

t

394

50200

398

400

392

3010 70

390

40

51. From PV = 10 we get P (V ) = 10/V .
By definition,Z 4

2

P (V ) dV =

Z 4

2

10

V
dV

= lim
n→∞

nX
i=1

2

n
· 10

2 + 2i
n

An estimate of the value of this inte-
gral is setting n = 100, and then the
integral ≈ 6.93

52. The average temperature over the
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year is

1

12

Z 12

0

64− 24 cos
³π
6
t
´
dt

If you look at the graphs T (t) and
f(t) = 64 you should be able to see
that the area under T (t) and f(t) be-
tween t = 0 to t = 12 are equal. This
means that the average temperature
is 64.

0
102

t

128640

80

60

40

20

53.
1

2− 0
Z 2

0

f(x)dx = 5Z 2

0

f(x)dx = 10

and
1

6− 2
Z 6

2

f(x)dx = 11Z 6

2

f(x)dx = 44

The average value of f over [0, 6] is
1

6− 0
Z 6

0

f(x)dx

=
1

6

µZ 2

0

f(x)dx+

Z 6

2

f(x)dx

¶
=
1

6
(10 + 44) = 9

54.
1

b− a

Z b

a

f(x)dx = vZ b

a

f(x)dx = v(b− a)

and
1

c− b

Z c

b

f(x)dx = w

Z c

b

f(x)dx = w(c− b)

The average value of f over [a, c] is
1

c− a

Z c

a

f(x)dx

=
1

c− a

∙Z b

a

f(x)dx+

Z c

b

f(x)dx

¸
=

1

c− a
[v(b− a) + w(c− b)]

=
v(b− a) + w(c− b)

c− a

55.

Z 2

0

3xdx =
1

2
bh =

1

2
(2)(6) = 6

56.

Z 4

1

2xdx =
1

2
(a+ b)h =

1

2
(2 + 8)(3)

= 15

57.

Z 2

0

√
4− x2 =

1

4
πr2 =

1

4
π
¡
22
¢
= π

58.

Z 0

−3

√
9− x2dx =

1

4
πr2 =

1

4
π32

=
9π

4

59. (a) Average temperature

=
1

24
[3(44) + 3(52) + 3(70) + 3(82)

+3(86)+3(80)+3(72)+3(56) ]

=
3

24
[44 + 52 + 70 + 82 + 86 + 80

+ 72 + 56 ]

=
542

8
= 67.75

(b) average temperature

=
1

24
[3(46) + 3(44) + 3(52) + 3(70)

+3(82)+3(86)+3(80)+3(72) ]

=
3

24
[46 + 44 + 52 + 70 + 82 + 86

+ 80 + 72 ]

=
1

8
[532] = 66.5

60. In Exercise 59, the estimate in part
(a) is the average temperature of the
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time interval [3 : 00, 12 : 00], recorded
every 3 hours. The estimate in part
(b) is the average temperature of the
time interval [12 : 00, 9 : 00], recorded
every 3 hours.

61. Since r is the rate at which items are
shipped, rt is the number of items
shipped between time 0 and time t.
Therefore, Q − rt is the number of
items remaining in inventory at time
t. Since Q − rt = 0 when t = Q/r,
the formula is valid for 0 ≤ t ≤
Q/r. The average value of f(t) =
Q − rt on the time interval [0, Q/r]

is
1

Q/r − 0
Z Q/r

0

f(t)dt

=
r

Q

Z Q/r

0

(Q− rt)dt

=
r

Q

∙
Qt− 1

2
rt2
¸Q/r
0

=
r

Q

∙
Q2

r
− r

2

Q2

r2

¸
=

r

Q

∙
Q2

2r

¸
=

Q

2

62. f(Q) = c0
D

Q
+ cc

Q

2

f 0(Q) = −c0D
Q2

+
cc
2

Setting f 0(Q) = 0 gives
c0D

Q2
=

cc
2

Q =

r
2c0D

cc

This is the right answer of Q min-
imizing the total cost f(Q), since
when the value of Q is very small,
the value of D/Q will get very big,
and when the value of Q is very
small, the value of Q/2 will get very
big. This means that the function
f(Q) is decreasing on the interval

[0,
p
2c0D/cc] and increasing on the

interval [
p
2c0D/cc,∞].

When Q =
p
2c0D/cc,

c0
D

Q
=

c0Dq
2c0D
cc

= cc

q
2c0D
cc

2
= cc

Q

2

63. Delivery is completed in time Q/p,
and since in that time Qr/p items are
shipped, the inventory when delivery
is completed is

Q− Qr

p
= Q

µ
1− r

p

¶
The inventory at any time is given by

g(t) =

⎧⎨⎩ (p− r)t for t ∈
h
0, Q

p

i
Q− rt for t ∈

h
Q
p
, Q
r

i
The graph of g has two linear pieces.
The average value of g over the in-
terval [0, Q/r] is the area under the
graph (which is the area of a triangle
of base Q/r and height Q(1 − r/p))
divided by the length of the interval
(which is the base of the triangle).
Thus the average value of the func-
tion is (1/2)bh divided by b, which is

(1/2)h = (1/2)Q(1− r/p)

This time the total cost

f(Q) = c0
D

Q
+ cc

Q

2
(1− r

p
)

f 0(Q) = −c0D
Q2

+
cc(1− r

p
)

2

f 0(Q) = 0 gives
c0D

Q2
=

cc
2
(1− r

p
)

Q =

s
2c0D

cc(1− r/p)

The order size to minimize the total
cost is

Q =

s
2c0D

cc(1− r/p)
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64. Use the result from Exercise 62,

Q =

r
2c0D

cc

=

r
2(50, 000)(4000)

3800
≈ 324.44.

Since this quantity already takes ad-
vantage of largest possible discount,
the order size that minimizes the to-
tal cost is about 324.44 items.

65. The maximum of

F (t) = 9− 108(t− 0.0003)2

occurs when 108(t − 0.0003)2 reaches
its minimum, that is, when t =
0.0003. At that time

F (0.0003) = 9 thousand pounds.

We estimate the value ofZ 0.0006

0

[9− 108(t− 0.0003)2] dt

using midpoint sum and n = 20, and
get m∆v ≈ 0.00360 thousand pound-
seconds, so ∆v ≈ 360 ft per second.

66. The impulse-momentum equation of
Problem 65 gives

5∆v

=

Z 0.4

0

(1000− 25, 000(t− 0.2)2) dt

=

Z 0.4

0

(−25000t2 + 10000t) dt
Using a midpoint sum and n = 20
gives an approximation for this inte-
gral of 267.0.. This means 5∆v ≈ 267
and ∆v ≈ 53.4 m/s

67. Since f(x) = x3 is an odd function,
the area under the curve and above
the x-axis from 0 to 1 is the same as
the area under the x-axis and above
the curve for −1 to 0.

You can see that
R 1
−1 x

3e−xdx < 0 by
thinking of e−x as a weighting factor.
Since the weighting factor is always
positive, and is greater for x < 0 than
it is for x > 0, the “negative” area to
the left of x = 0 counts more than the
“positive” area to the right of x = 0.

68. The Riemann sum for n rectangles is
Rn =

Pn
i=1 f(ci) ∆x,

where ci is in the interval [xi−1, xi] and
∆x = xi − xi−1.

On the subinterval [xi−1, xi], we apply
the Integral Mean Value Theorem and
choose a point ci such that

f(ci) =
1

xi − xi−1

Z xi

xi−1
f(x) dx

=
1

∆x

Z xi

xi−1
f(x) dx

With this choice for each ci, we have

f(ci) ∆x =

Z xi

xi−1
f(x) dx

and therefore

Rn =
nX
i=1

f(ci) ∆x =
nX
i=1

Z xi

xi−1
f(x) dx

Now notice that the endpoints of
these integrals are all adjacent and we
can apply part (iv) of Theorem 2.2 to
combine all the integrals into one in-
tegral.

Rn =
nX
i=1

Z xi

xi−1
f(x) dx

=

Z xn

x0

f(x) dx =

Z b

a

f(x) dx
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4.5 The Fundamental

Theorem Of

Calculus

1.

Z 2

0

(2x− 3) dx

=
¡
x2 − 3x¢ ¯̄̄2

0
= −2

2.

Z 3

0

(x2 − 2) dx

=

µ
x3

3
− 2x

¶ ¯̄̄3
0
= 3

3.

Z 1

−1
(x3 + 2x) dx

=

µ
x4

4
+ x2

¶ ¯̄̄1
−1
= 0

4.

Z 2

0

(x3 + 3x− 1) dx

=

µ
x4

4
− 3x

2

2
− x

¶ ¯̄̄2
0
= 12

5.

Z 4

0

(
√
x+ 3x) dx

=

µ
2

3
x
3
2 +

3x2

2

¶ ¯̄̄4
0
=
88

3

6.

Z 2

1

(4x− 2/x2) dx

=

µ
2x2 +

2

x

¶ ¯̄̄2
1
= 5

7.

Z 1

0

(x
√
x+ x−

1
2 ) dx

=

µ
2

5
x
5
2 + 2x

1
2

¶ ¯̄̄1
0
=
12

5

8.

Z 8

0

( 3
√
x− x2/3) dx

=

µ
3

4
x4/3 − 3

5
x5/3

¶ ¯̄̄8
0
= −36

5

9.

Z π
4

0

(secx tanx) dx

= secx
¯̄̄π
4

0
=
√
2− 1

10.

Z π/4

0

sec2 x dx = tanx
¯̄̄π/4
0
= 1

11.

Z π

π/2

(2 sinx− cosx) dx

= (−2 cosx− sinx)
¯̄̄π
π/2
= 3

12.

Z 1

0

(ex − e−x) dx

=
¡
ex + e−x

¢ ¯̄̄1
0

= e+ e−1 − 2

13.

Z 1/2

0

3√
1− x2

dx

= 3 sin−1 x
¯̄̄1/2
0

= 3
³π
6
− 0
´
=

π

2

14.

Z 1

−1

4

1 + x2
dx

= 4arctanx
¯̄̄1
−1
= 2π

15.

Z 4

1

x− 3
x

dx

=

Z 4

1

¡
1− 3x−1¢ dx

= (x− 3 ln |x|)
¯̄̄4
1
= 3− 3 ln 4

16.

Z 2

1

x2 − 3x+ 4
x2

dx

=

Z 2

1

1− 3
x
+
4

x2
dx

=

µ
x− 3 ln |x|− 4

x

¶ ¯̄̄2
1

= −3 ln 2 + 3
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17.

Z 4

0

x(x− 2) dx

=

µ
x3

3
− x2

¶¯̄̄̄4
0

=
16

3

18.

Z π/3

0

3 sec2 x dx

= (3 tanx)
¯̄̄π/3
0
= 3
√
3

19.

Z ln 2

0

(ex/2)2 dx

= (ex)
¯̄̄ln 2
0
= 2− 1 = 1

20.

Z π

0

(sin2 x+ cos2 x) dx

=

Z π

0

1 dx = (x)
¯̄̄π
0
= π

21.

Z 2

0

√
x2 + 1 dx

= lim
n→∞

nX
i=1

2

n

sµ
2i

n
+ 1

¶
Estimating using n = 20, we get the
Riemann sum ≈ 2.96

22.

Z 2

0

(
√
x+ 1)2 dx

=

Z 2

0

(x+ 2
√
x+ 1) dx

=

µ
x2

2
+
4

3
x3/2 + x

¶ ¯̄̄2
0

= 4 +
8
√
2

3

23.

Z 4

1

x2

x2 + 4
dx

= lim
n→∞

nX
i=1

3

n

(1 + (3i/n)2)

(1 + 3i/n)2 + 4

Estimating using n = 20, we get the
Riemann sum ≈ 1.71

24.

Z 4

1

x2 + 4

x2
dx

=

Z 4

1

1 +
4

x2
dx

=
¡
x− 4x−1¢ ¯̄̄4

1
= 6

25.

Z π/4

0

sinx

cos2 x
dx

=

Z π/4

0

tanx secx dx

= secx
¯̄̄π/4
0
=
√
2− 1

26.

Z π/4

0

tanx

sec2 x
dx

=

Z π/4

0

sinx cosx dx

=

Z π/4

0

1

2
sin 2x dx

=

µ
−1
4
cos 2x

¶ ¯̄̄π/4
0
=
1

4

27. f 0(x) = x2 − 3x+ 2
28. f 0(x) = x2 − 3x− 4

29. f 0(x) =
³
e−(x

2)2 + 1
´ d

dx
(x2)

=
³
e−x

4

+ 1
´
(2x)

30. f 0(x) = sin(x2 + 1)(2x)

31. f 0(x) = − ln(x2 + 1)
32. f 0(x) = − secx.
33. y0(x) = sin

√
x2 + π2

At the point in question, y(0) = 0 and
y0(0) = sinπ = 0

Therefore, the tangent line has slope
0 and passes through the point (0, 0).
The equation of this line is y = 0.

34. y0(x) = ln(x2 + 2x+ 2)
At the point in question, y(−1) = 0
and
y0(−1) = ln 1 = 0
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Therefore, the tangent line has slope 0
and passes through the point (−1, 0).
The equation of this line is y = 0.

35. y0(x) = cos(πx3)
At the point in question, y(2) = 0 and
y0(2) = cos 8π = 1

Therefore, the tangent line has slope
1 and passes through the point (2, 0).
The equation of this line is y = x− 2.

36. y0(x) = e−x
2+1

At the point in question, y(0) = 0 and
y0(0) = e

Therefore, the tangent line has slope
e and passes through the point (0, 0).
The equation of this line is y = ex.

37. f 0(x) = x2 − 3x+ 2
Setting f 0(x) = 0 we get

(x− 1)(x− 2) = 0, x = 1, 2.

f 0(x)
½

> 0 when t < 1 or t > 2
< 0 when 1 < t < 2

f(1) =

Z 1

0

(t2 − 3t+ 2) dt

= (t3/3− 3t2/2 + 2t)
¯̄̄1
0
=
5

6

f(2) =

Z 2

0

(t2 − 3t+ 2) dt

= (t3/3− 3t2/2 + 2t)
¯̄̄2
0
=
2

3

Hence f(x) has a local maximum at
the point (1, 5/6) and a local mini-
mum at the point (2, 2/3).

38.

Z x

0

[f(t)− g(t)] dt

=

Z x

0

[55 + 10 cos t− (50 + 2t)] dt

=

Z x

0

(5 + 10 cos t− 2t) dt
= 5t+ sin t− t2

¯̄̄x
0

= 5x+ sinx− x2

Since we are integrating the difference
in speeds, the integral represents the
distance that Katie is ahead at time
x. Of course, if this value is negative,
is means that Michael is really ahead.

39. The graph of y = 4− x2 is above the
x-axis over the interval [−2, 2].Z 2

−2
(4− x2) dx

= (4x− x3

3
)
¯̄̄2
−2

=
32

3

40. The graph of y = x2−4x is below the
x-axis over the interval [0, 4].Z 4

0

−(x2 − 4x) dx

=

µ
−x

3

3
+ 2x2

¶ ¯̄̄4
0
=
32

3
.

41. The graph of y = x2 is above the x-
axis over the interval [0, 2].Z 2

0

x2 dx =
x3

3

¯̄̄2
0
=
8

3

42. The graph of y = x3 is above the x-
axis over the interval [0, 3].Z 3

0

x3 dx =

µ
x4

4

¶ ¯̄̄3
0
=
81

4

43. The graph of y = sinx is above the
x-axis over the interval [0, π].Z π

0

sinx dx = − cosx
¯̄̄π
0
= 2

44. The graph of y = sinx is below
the x-axis over the interval [−π/2, 0]
and above the x-axis over the interval
[0, π/4]. Hence we need to compute
two separate integrals and add them
together:Z 0

−π/2
− sinx dx+

Z π/4

0

sinx dx
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= (cosx)
¯̄̄0
−π/2

+ (− cosx)
¯̄̄π/4
0

= 1 +

µ
1− 1√

2

¶
= 2− 1√

2
.

45. If you look at the graph of 1/x2, it is
obvious that there is positive area be-
tween the curve and the x-axis over
the interval [−1, 1]. In addition to
this, there is a vertical asymptote in
the interval that we are integrating
over which should alert us to a pos-
sible problem.

The problem is that 1/x2 is not con-
tinuous on [−1, 1] (the discontinuity
occurs at x = 0) and that continuity
is one of the conditions in the Funda-
mental Theorem of Calculus, Part I
(Theorem 4.1).

y

50

40

30

20

10

0

x

10.50-0.5-1

46. If you look at the graph of sec2 x, it
is obvious that there is positive area
between the curve and the x-axis over
the interval [0, π]. In addition to this,
there is a vertical asymptote in the
interval that we are integrating over
which should alert us to a possible
problem.

The problem is that sec2 x is not con-
tinuous on [0, π] and that continuity
is one of the conditions in the Funda-
mental Theorem of Calculus, Part I
(Theorem 4.1).

x

y

4

10

8

3

6

4

2

2

0
10-1

47. s(t) = 40t+ cos t+ c,
s(0) = 0 + cos 0 + c = 2 so therefore
c = 1 and
s(t) = 40t+ cos t+ 1.

48. s(t) = 10et + c,
s(0) = 10+ c = 2 so therefore c = −8
and
s(t) = 10e−t − 8.

49. v(t) = 4t− t2

2
+ c1,

v(0) = c1 = 8 so therefore c1 = 8 and

v(t) = 4t− t2

2
+ 8.

s(t) = 2t2 − t3

6
+ 8t+ c2,

s(0) = c2 = 0 so therefore c2 = 0 and

s(t) = 2t2 − t3

6
+ 8t.

50. v(t) = 16t− t3

3
+ c1,

v(0) = c1 = 0 so therefore c1 = 0 and

v(t) = 16t− t3

3
.

s(t) = 8t2 − t4

12
+ c2,

s(0) = c2 = 30 so therefore c2 = 30
and

s(t) = 8t2 − t4

12
+ 30.

51. ω(t) = 10t + c1 and ω(0) = 0 gives
that c1 = 0 and hence ω(t) = 10t.
ω(0.8) = 8 rad/s.
v(0.8) = 3(8) = 24 ft/s.
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θ(t) = 5t2+c2 and θ(0) = 0, so c2 = 0
and θ(t) = 5t2

θ(0.8) = 5(0.82) = 3.2 rad.

52. The angular velocity of the club is the
antiderivative of the angular acceler-
ation:
ω(t) = αt+ c1.
The initial angular velocity is ω(0) =
0 (the club starts at rest) and there-
fore c1 = 0 and ω(t) = αt.

The angular position of the club is the
antiderivative of angular velocity:

θ(t) =
αt2

2
+ c2.

The initial position of the club is
θ(0) = 0 and therefore c2 = 0 and

θ(t) =
αt2

2
.

The club strikes the ball when θ(t) =
3π

2
, so we solve

αt2

2
=
3π

2
and see that this occurs when t =r
3π

α
.

Next, the angular velocity of the club
at this time is

ω

Ãr
3π

α

!
= α

r
3π

α
=
√
3πα.

The linear velocity is 4 times this
amount, and we want the linear veloc-
ity to be equal to 100 miles per hour,

or
440

3
feet per second. Therefore, we

need to solve the following equation
for α:

4
√
3πα =

440

3
.

Solving gives α =
12100

27π
≈ 142.65 ra-

dians per second squared.

53. fave =
1

3− 1
Z 3

1

(x2 − 1) dx

=
1

2

µ
x3

3
− x

¶ ¯̄̄3
1
=
10

3
.

54. fave =
1

1− 0
Z 1

0

(x2 + 2x) dx

=

µ
x3

3
+ x2

¶ ¯̄̄1
0
=
4

3
.

55. fave =
1

1− 0
Z 1

0

(2x− 2x2) dx

=

µ
x2 − 2x

3

3

¶ ¯̄̄1
0
=
1

3

56. fave =
1

2− 1
Z 2

1

(x3 − 3x2 + 2x) dx

=

µ
x4

4
− x3 + x2

¶ ¯̄̄2
1
= −1

4

57. fave =
1

π/2− 0
Z π/2

0

cosx dx

=
2

π
(sinx)

¯̄̄π/2
0
=
2

π

58. fave =
1

π/2− 0
Z π/2

0

sinx dx

=
2

π
(− cosx)

¯̄̄π/2
0
=
2

π

59.

Z 3

0

f(x) dx <

Z 2

0

f(x) dx

<

Z 1

0

f(x) dx

60.

Z 1

0

f(x) dx <

Z 3

0

f(x) dx

<

Z 2

0

f(x) dx

61. Using the Fundamental Theorem of
Calculus, it follows that an an-
tiderivative of e−x

2
is
R x
a
e−t

2
dt where

a is a constant.

62. Using the Fundamental Theorem
of Calculus, it follows that an
antiderivative of sin

√
x2 + 1 isR x

a
sin
√
t2 + 1 dt where a is a con-

stant.
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63. CS =

Z Q

0

D(q) dq − PQ

=

Z Q

0

(150− 2q − 3q2) dq − PQ

= (150q − q2 − q3)
¯̄̄Q
0
− PQ

= 150Q−Q2 −Q3

− (150− 2Q− 3Q2)Q

= Q2 + 2Q3

When Q = 4,
CS = 16 + 2(64) = 144 dollars.

When Q = 6,
CS = 36 + 2(216) = 468 dollars.
The consumer surplus is higher for
Q = 6 than that for Q = 4.

64. CS =

Z Q

0

D(q) dq − PQ

=

Z Q

0

40e−0.05q dq − PQ

= (−800e−0.05q)
¯̄̄Q
0
− PQ

= −800e−0.05Q + 800− 40e−0.05Q
= −840e−0.05Q + 800
When Q = 10,
CS = −840e−0.5 + 800 ≈ 290.5 dol-
lars.

When Q = 20,
CS = −840e−1+800 ≈ 491.0 dollars.
The consumer surplus is higher for
Q = 20 than that for Q = 10.

65. The next shipment must arrive when
the inventory is zero. This occurs at
time T : f(t) = Q− r

√
t

f(T ) = 0 = Q− r
√
T

r
√
T = Q

T =
Q2

r2

The average value of f on [0, T ] is:
1

T

Z T

0

f(t) dt

=
1

T

Z T

0

(Q− rt1/2) dt

=
1

T

∙
Qt− 2

3
rt3/2

¸T
0

=
1

T

∙
QT − 2

3
rT 3/2

¸
= Q− 2

3
r
√
T

= Q− 2
3
r
Q

r

=
Q

3

66. The total annual cost

f(Q) = c0
D

Q
+ ccA = c0

D

Q
+ cc

Q

3
.

f 0(Q) = −c0 D
Q2
+ cc

1
3

f 0(Q) = 0 gives that Q =
q

3c0D
cc

This value of Q minimizes the total
cost, since

f 0(Q)

⎧⎨⎩ > 0 when Q <
q

3c0D
cc

< 0 when Q >
q

3c0D
cc

.

When Q =
q

3c0D
cc
,

c0
D

Q
= c0

Dp
3c0D/cc

= cc
Q

3
= ccA.

67. When a < 2 or a > 2, f is contin-
uous. Using the Fundamental Theo-
rem of Calculus,h
lim
x→a

F (x)
i
− F (a)

= lim
x→a

[F (x)− F (a)]

= lim
x→a

∙Z x

0

f(t) dt−
Z a

0

f(t) dt

¸
= lim

x→a

∙Z x

a

f(t) dt

¸
= 0

When a = 2,

lim
x→a−

∙Z x

a

f(t) dt

¸
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= lim
x→2−

∙Z x

2

t dt

¸
= lim

x→2−

∙
t2

2

¸x
0

= lim
x→2−

∙
x2

2
− 2

2

2

¸
= 0 and

lim
x→a+

∙Z x

a

f(t) dt

¸
= lim

x→2+

∙Z x

2

(t+ 1) dt

¸
= lim

x→2+

∙
t2

2
+ t

¸x
0

= lim
x→2+

∙
x2

2
+ x− 2

2

2
− 2
¸

= 0

Thus, for all values of a,h
lim
x→a

F (x)
i
− F (a) = 0

lim
x→a

F (x) = F (a)

Thus, F is continuous for all x. How-
ever, F 0(2) does not exist, which is
shown as follows:

F 0(2) = lim
h→0

F (2 + h)− F (2)

h

= lim
h→0

1

h

∙Z 2+h

0

f(t) dt−
Z 2

0

f(t) dt

¸
= lim

h→0
1

h

Z 2+h

2

f(t) dt

We’ll show that this limit does not ex-
ist by showing that the left and right
limits are different. The right limit is

lim
h→0+

1

h

Z 2+h

2

f(t) dt

= lim
h→0+

1

h

Z 2+h

2

(t+ 1) dt

= lim
h→0+

1

h

∙
t2

2
+ t

¸2+h
2

= lim
h→0+

1

h

∙
(2 + h)2

2
+ 2 + h− 2

2

2
− 2
¸

= lim
h→0+

1

h

∙
h2 + 4h+ 4

2
+ 2 + h− 4

¸
= lim

h→0+
1

h

∙
h2

2
+ 3h

¸
= lim

h→0+
1

h

∙
h

2
+ 3

¸
= 3

The left limit is lim
h→0−

1

h

Z 2+h

2

f(t) dt

= lim
h→0−

1

h

Z 2+h

2

t dt

= lim
h→0−

1

h

∙
t2

2

¸2+h
2

= lim
h→0−

1

h

∙
(2 + h)2

2
− 2

2

2

¸
= lim

h→0−
1

h

∙
h2 + 4h+ 4

2
− 2
¸

= lim
h→0−

1

h

∙
h

2
+ 2

¸
= 2

Thus, F 0(2) does not exist. This re-
sult does not contradict the Funda-
mental Theorem of Calculus, because
in this situation, f(x) is not continu-
ous, and thus The Fundamental The-
orem of Calculus does not apply.

68. Let h1(x) =

Z x+k

0

g(t) dt

and h2(x) =

Z x

0

g(t) dt.

Then h01(x) = g(x+ k) and
h02(x) = g(x).

Since f(x) =
1

k
(h1(x)− h2(x)),

f 0(x) =
1

k
(h01(x+ k)− h02(x))

=
g(x+ k)− g(x)

k
In other words, the derivative of f(x)
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is the slope of the secant line be-
tween the two points (x, g(x)) and
(x+ k, g(x+ k)).

69. g(x) =

Z x

0

∙Z u

0

f(t) dt

¸
du

g0(x) =
Z x

0

f(t) dt

g00(x) = f(x)

A zero of f corresponds to a zero of
the second derivative of g (possibly an
inflection point of g).

70. When x = 0,
lim
n→∞

gn(x) = lim
n→∞

f(xn)

= lim
n→∞

f(0) = f(0).

When 0 < x < 1, lim
n→xn

= 0, and then

lim
n→∞

gn(x) = lim
n→∞

f(xn)

= f( lim
n→infty

xn) = f(0).

When x = 1,
lim
n→∞

gn(x) = lim
n→∞

f(xn)

= lim
n→∞

f(1) = f(1).

The integral

Z 1

0

gn(x) dx represents

the net area between the graph of
f(xn) and the x-axis. As n ap-
proaches ∞,
f(xn)→

½
f(0) when 0 ≤ x < 1
f(1) when x = 1

Thus the integral

Z 1

0

gn(x) dx ap-

proaches the area of the shape of a
rectangle with length 1 and width
f(0) (possibly negative), which means

lim
n→∞

Z 1

0

gn(x) dx = f(0)

71. The integrals in parts (a) and (c)
are improper, because the integrands
have asymptotes at one of the lim-
its of integration. The Fundamental
Theorem of Calculus applies to the in-
tegral in part (b).

72. The Fundamental Theorem of Calcu-
lus applies to the integral in part (a)
and (b). The integral in part (c) is
improper since the point x = π/2 lies
in the interval [0, 2], and secx is not
defined at x = π/2.

73. (a) lim
n→∞

1

n

∙
sin

π

n
+ sin

2π

n
+ · · ·+ sinπ

¸
=

Z 1

0

sin(πx) dx

= −1
π
cos(πx)

¯̄̄1
0

= −1
π
(cosπ − cos 0)

= −1
π
(−1− 1)

=
2

π

(b) lim
n→∞

2

n

∙
1

1 + 2/n
+

1

1 + 4/n
+ · · ·+ 1

3

¸
=

Z 2

0

1

1 + x
dx

= ln |1 + x|
¯̄̄2
0

= ln 3− ln 1
= ln 3

74. (a) lim
n→∞

1

n

£
e4/n + e8/n + · · ·+ e4

¤
=

Z 1

0

e4x dx =
1

4
e4x
¯̄̄̄1
0

=
e4 − 1
4

(b) lim
n→∞

4

n

"
2√
n
+
2
√
2√
n
+ ·2
1

#
=

Z 4

0

√
x dx

=
2

3
x
3
2

¯̄̄4
0
=
16

3

75. Let F (x) =

Z b(x)

a(x)

f(t) dt,

G(x) =

Z b(x)

0

f(t) dt,

H(x) =

Z a(x)

0

f(t) dt,
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Then
F (x) = G(x)−H(x).
G0(x) = f(b(x))b0(x)
H 0(x) = f(a(x))a0(x).

F 0(x) = G0(x)−H 0(x)
= f(b(x))b0(x)− f(a(x))a0(x).

4.6 Integration by

Substitution

1. Let u = x3 + 2 and then du = 3x2 dx
andZ

x2
√
x3 + 2 dx =

1

3

Z
u−1/2 du

=
2

9
u3/2 + c =

2

9
(x3 + 2)3/2 + c

2. Let u = x4 + 1 and then du = 4x3 dx
andZ

x3(x4 + 1)−2/3 dx =
1

4

Z
u−2/3 du

=
3

4
u1/3 + c =

3

4
(x4 + 1)1/3 + c

3. Let u =
√
x + 2 and then du =

1
2
x−1/2 dx andZ
(
√
x+ 2)3√
x

dx = 2

Z
u3 du

=
2

4
u4 + c =

1

2
(
√
x+ 2)4 + c

4. Let u = sinx and then du = cos dx
andZ
sinx cosx dx =

Z
u du

=
u2

2
+ c =

sin2 x

2
+ c

5. Let u = x4 + 3 and then du = 4x3 dx
andZ

x3
√
x4 + 3 dx =

1

4

Z
u1/2 du

=
1

6
u3/2 + c =

1

6
(x4 + 3)3/2 + c

6. Let u = tanx and then du = sec2 x dx
andZ
sec2 x

√
tanx dx =

Z
u1/2 du

=
2

3
u3/2 + c =

2

3
(tanx)3/2 + c

7. Let u = cosx and then
du = − sinx dx andZ

sinx√
cosx

dx = −
Z

du√
u

= −2√u+ c = −2√cosx+ c

8. Let u = sinx and then du = cosx dx
andZ
sin3 x cosx dx =

Z
u3 du

=
u4

4
+ c =

sin4 x

4
+ c

9. Let u = x3 and then du = 3x2 dx andZ
x2 cosx3 dx =

1

3

Z
cosu du

=
1

3
sinu+ c =

1

3
sinx3 + c

10. Let u = cosx + 3 and then du =
− sinx dx andZ
sinx(cosx+ 3)3/4 dx = −

Z
u3/4 du

= −4
7
u7/4 + c = −4

7
(cosx+ 3)7/4 + c

11. Let u = x2 + 1 and then du = 2x dx
andZ

xex
2+1 dx =

1

2

Z
eu du

=
1

2
eu + c =

1

2
ex

2+1 + c

12. Let u = ex + 4 and then du = ex dx
andZ

ex
√
ex + 4 dx =

Z √
u du

=
2

3
u3/2 + c =

2

3
(ex + 4)3/2 + c

13. Let u =
√
x and then du = 1

2
√
x
dx

and
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Z
e
√
x

√
x
dx = 2

Z
eu du

= 2eu + c = 2e
√
x + c

14. Let u = x2 + 2x− 1 and then
du = 2(x+ 1) dx andZ

x+ 1

(x2 + 2x− 1)2 dx =
1

2

Z
u−2 du

= −1
2
u−1 + c = − 1

2(x2 + 2x− 1) + c

15. Let u = lnx, and then du = 1
x
dx andZ √

lnx

x
dx =

Z √
u du

=
2

3
u3/2 + c =

2

3
(lnx)3/2 + c

16. Let u = 1
x
and then du = − 1

x2
dx andZ

cos 1
x

x2
dx = −

Z
cosu du

= − sinu+ c = − sin 1
x
+ c

17. Let u =
√
x + 1 and then du =

1

2
√
x
dx andZ

1√
x (
√
x+ 1)

2 dx = 2

Z
u−2 du

= −2u−1 + c = −2 ¡√x+ 1¢−1 + c

18. Let u = x2 + 4 and then du = 2x dx
andZ

x

x2 + 4
dx =

1

2

Z
du

u

=
1

2
ln |u|+ c =

1

2
ln |x2 + 4|+ c

=
1

2
ln(x2 + 4) + c

19. Let u = lnx + 1 and then du =
1

x
dx

andZ
4

x(lnx+ 1)2
dx = 4

Z
u−2 du

= −4u−1 + c = −4(lnx+ 1)−1 + c

20. Let u = cos 2x and then
du = −2 sin 2x dx andZ
tan 2x dx = −1

2

Z
1

u
du

= −1
2
ln |u|+ c = −1

2
ln | cos 2x|+ c

21. Let u = sin−1 x
and then du = 1√

1−x2 dx andZ
(sin−1 x)3√
1− x2

dx =

Z
u3 du

=
u4

4
+ c =

(sin−1 x)4

4
+ c

22. Let u = x3 and then du = 3x2 dx andZ
x2 sec2 x3 dx =

1

3

Z
sec2 u du

=
1

3
tanu+ c =

1

3
tanx3 + c

23. Let u = x2 and then du = 2xdx andZ
x√
1− x4

dx =
1

2

Z
1√
1− u2

du

=
1

2
sin−1 u+ c =

1

2
sin−1 x2 + c

24. Let u = 1−x4 and then du = −4x3 dx
andZ

x3

(1− x4)1/2
dx = −1

4

Z
u−1/2 du

= −1
2
u1/2 + c = −1

2
(1− x4)1/2 + c

25. Let u = x3 and then du = 3x2dx andZ
x2

1 + x6
dx =

1

3

Z
1

1 + u2
du

=
1

3
tan−1 u+ c =

1

3
tan−1 x3 + c

26. Let u = 1 + x6 and then du = 6x5 dx
andZ

x5

1 + x6
dx =

1

6

Z
1

u
du

=
1

6
ln |u|+ c =

1

6
ln |1 + x6|+ c

27. Let u = x+ 7 and then
du = dx, x = u− 7 and
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Z
2x+ 3

x+ 7
dx =

Z
2(u− 7) + 3

u
du

=

Z µ
2− 11

u

¶
du = 2u−11 ln |u|+c

= 2(x+ 7)− 11 ln |x+ 7|+ c

28. Let u = x+ 3 and then du = dx andZ
x2

(x+ 3)1/3
dx =

Z
(u− 3)2
u1/3

du

=

Z
(u5/3 − 6u2/3 + 9u−1/3) du

=
3

8
u8/3 − 18

5
u5/3 +

18

2
u2/3 + c

=
3

8
(x+ 3)8/3 − 18

5
(x+ 3)5/3

+
18

2
(x+ 3)2/3 + c

29. Let u =
p
1 +
√
x and then

(u2 − 1)2 = x
2(u2 − 1)(2u)du = dx andZ

1p
1 +
√
x
dx

=

Z
4u(u2 − 1)

u
du

= 4

Z
(u2 − 1) du

= 4

µ
u3

3
− u

¶
+ c

=
4

3
(1 +

√
x)3/2 − 4(1 +√x)1/2 + c

30. Let u = x2 and then du = 2x dx andZ
dx

x
√
x4 − 1

=

Z
du/2

u
√
u2 − 1

=
1

2
sec−1 u+ c

=
1

2
sec−1 x2 + c

31. Let u = x2 + 1 and then
du = 2x dx, u(0) = 1, u(2) = 5Z 2

0

x
√
x2 + 1 dx =

1

2

Z 5

1

√
u du

=
1

2
· 2
3
u3/2

¯̄̄5
1
=
1

3

³√
125− 1

´
=
5

3

√
5− 1

3

32. Let u = πx2 and then du = 2πx dx
andZ 3

1

x sin(πx2) dx =
1

2π

Z 9π

π

sinu du

= (sinu)|9ππ = 0

33. Let u = x2 + 1 and then
du = 2x dx, u(−1) = 2 = u(1) andZ 1

−1

x

(x2 + 1)1/2
dx

=
1

2

Z 2

2

u−1/2 du = 0

34. Let u = x3 and then
du = 3x2 dx, u(0) = 0, u(2) = 8 andZ 2

0

x2ex
3

dx =
1

3

Z 8

0

eu du

=
1

3
eu
¯̄̄8
0
=
1

3
(e8 − 1)

35. Let u = ex and then
du = exdx, u(0) = 1, u(2) = e2 andZ 2

0

ex

1 + e2x
dx =

Z e2

1

1

1 + u2
du

= tan−1 u
¯̄̄e2
1
= tan−1 e2 − tan−1 1

= tan−1 e2 − π

4

36. Let u =
√
x and then du = 1

2
x−

1
2 dx,

u(0) = cos 0 = 1, u(π2) = cosπ = −1
andZ π2

0

cos
√
x√

x
dx = 2

Z −1

1

cosu du

= sinu
¯̄̄−1
1
= sin(−1)− sin(1)

37. Let u = sinx and then du = cosx dx
u(π/4) = 1/

√
2, u(π/2) = 1 andZ π/2

π/4

cotx dx =

Z 1

1/
√
2

1

u
du

= ln |u||11/√2 = ln
√
2
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38. Let u = lnx and then du = 1
x
dx

u(1) = 0, u(e) = 1 andZ e

1

lnx

x
dx =

Z 1

0

u du =
u2

2

¯̄̄1
0
=
1

2

39.

Z 4

1

x− 1√
x

dx =

Z 4

1

¡
x1/2 − x−1/2

¢
dx

=

µ
2

3
x3/2 − 2x1/2

¶ ¯̄̄4
1

=

µ
16

3
− 4
¶
−
µ
2

3
− 2
¶
=
8

3

40. Let u = x2 + 1 and then du = 2x dx
andZ 1

0

x

(x2 + 1)1/2
dx =

1

2

Z 2

1

u−1/2 du

=
¡
u1/2

¢ ¯̄̄2
1
=
√
2− 1

41. (a)

Z π

0

sinx2 dx ≈ .77 using mid-

point evaluation with n ≥ 40
(b) Let u = x2 and then du = 2x dx

andZ π

0

x sinx2 dx =
1

2

Z π2

0

sinu du

=
1

2
(− cosu)

¯̄̄π2
0

= −1
2
cosπ2 +

1

2
≈ 0.95134

42. (a) Let u = x2 and then du =
2x dx, u(−1) = 1, u(1) = 1Z 1

−1
xe−x

2

dx =
1

2

Z 1

1

d−u du = 0

(b)

Z 1

−1
e−x

2

dx ≈ 1.4937 using mid-
point evaluation with n ≥ 50.

43. (a)

Z 2

0

4x2

(x2 + 1)2
dx ≈ 1.414 using

right endpoint evaluation with
n ≥ 50.

(b) Let u = x2 + 1 and then
du = 2x dx, x2 = u− 1 andZ 2

0

4x3

(x2 + 1)2
dx =

Z 5

1

2
u− 1
u2

du

=

Z 5

1

(2u−1 − 2u−2) du

=
¡
2 ln |u|+ 2u−1¢ ¯̄̄5

1

= 2 ln 5− 8
5

44. (a)

Z π/4

0

secx dx ≈ .88 using mid-

point evaluation with n ≥ 10.

(b)

Z π/4

0

sec2 x dx

= (tanx)
¯̄̄π/4
0
= 1

45.
1

2

Z 4

0

f(u) du

46.
1

3

Z 8

1

f(u) du

47.

Z 1

0

f(u) du

48.

Z 4

0

f(
√
x)√
x

dx = 2

Z 2

0

f(u) du

49.

Z a

−a
f(x)dx

=

Z 0

−a
f(x)dx+

Z a

0

f(x)dx

Let u = −x and du = −dx
in the first integral. Then,Z a

−a
f(x) dx

= −
Z 0

a

f(−u) du+
Z a

0

f(x) dx

=

Z a

0

f(−u) du+
Z a

0

f(x) dx

If f is even, then f(−u) = f(u), and
so
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Z a

−a
f(x)dx

=

Z a

0

f(u) du+

Z a

0

f(x) dx

=

Z a

0

f(x) dx+

Z a

0

f(x) dx

= 2

Z a

0

f(x) dx

If f is odd, then f(−u) = −f(u), and
soZ a

−a
f(x)dx

= −
Z a

0

f(u)du+

Z a

0

f(x)dx

= −
Z a

0

f(x)dx+

Z a

0

f(x)dx

= 0

50. First, let u = x − T , then for any a,Z a+T

T

f(x) dx =

Z a

0

f(u+ T ) du

=

Z a

0

f(u) du =

Z a

0

f(x) dx

If we let a = T, then we getZ T

0

f(x) dx =

Z 2T

T

f(x) dx.

If we let a = 2T, then we getZ 2T

0

f(x) dx =

Z 3T

T

f(x) dx and thenZ T

0

f(x) dx =

Z 2T

T

f(x) dx

=

Z 2T

0

f(x) dx−
Z T

0

f(x) dx

=

Z 3T

T

f(x) dx−
Z 2T

T

f(x) dx

=

Z 3T

2T

f(x) dx

It is straightforward to see that for
any integer i,Z T

0

f(x) dx =

Z (i+1)T

iT

f(x) dx

Now suppose 0 ≤ a ≤ T , thenZ T

0

f(x) dx−
Z a+T

a

dx

=

Z a

0

f(x) dx−
Z a+T

T

f(x) dx

= 0

So

Z T

0

f(x) dx =

Z a+T

a

dx

Next suppose a is any number. Then
a must lie in some interval [iT, (i +
1)T ] for some integer i. Use the sim-
ilar method as in above, we shall getZ (i+1)T

iT

f(x) dx =

Z a+T

a

f(x) dx

And sinceZ (i+1)T

iT

f(x) dx =

Z T

0

f(x) dx

we get

Z T

0

f(x) dx =

Z a+T

a

f(x) dx

51. Let u = 10 − x, so that du = − dx.
Then,

I =

Z 10

0

√
x√

x+
√
10− x

dx

= −
Z x=10

x=0

√
10− u√

10− u+
√
u
du

= −
Z u=0

u=10

√
10− u√

10− u+
√
u
du

=

Z u=10

u=0

√
10− u√

10− u+
√
u
du

I =

Z x=10

x=0

√
10− x√

10− x+
√
x
dx

The last equation follows from the
previous one because u and x are
dummy variables of integration. Now
note that√

x√
x+
√
10− x

=

√
x+
√
10− x−√10− x√
x+
√
10− x

= 1−
√
10− x√

x+
√
10− x

Thus,
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Z 10

0

√
x√

x+
√
10− x

dx

=

Z 10

0

∙
1−

√
10− x√

x+
√
10− x

¸
dx

=

Z 10

0

1 dx−
Z 10

0

√
10− x√

x+
√
10− x

dx

I =

Z 10

0

1 dx− I

2I = 10
I = 5

52. Let u = a− x, so that
du = − dx. Then,

I =

Z a

0

f(x)

f(x) + f(a− x)
dx

= −
Z 0

a

f(a− u)

f(a− u) + f(u)
du

=

Z a

0

f(a− u)

f(a− u) + f(u)
du

I =

Z a

0

f(a− x)

f(a− x) + f(x)
dx

The last equation follows from the
previous one because u and x are
dummy variables of integration. Now
note that

f(x)

f(x) + f(a− x)

=
f(x) + f(a− x)− f(a− x)

f(x) + f(a− x)

= 1− f(a− x)

f(a− x) + f(x)

Thus,Z a

0

f(x)

f(x) + f(a− x)
dx

=

Z a

0

∙
1− f(a− x)

f(a− x) + f(x)

¸
dx

=

Z a

0

1 dx−
Z a

0

f(a− x)

f(a− x) + f(x)
dx

I =

Z a

0

1 dx− I

2I = a
I = a/2

53. Let u = 6− x, so that du = − dx.

Then,

I =

Z 4

2

sin2(9− x)

sin2(9− x) + sin2(x+ 3)
dx

= −
Z 2

4

sin2(u+ 3)

sin2(u+ 3) + sin2(9− u)
du

=

Z 4

2

sin2(u+ 3)

sin2(u+ 3) + sin2(9− u)
du

=

Z 4

2

sin2(x+ 3)

sin2(x+ 3) + sin2(9− x)
dx

=

Z 4

2

∙
1− sin2(9− x)

sin2(x+ 3) + sin2(9− x)

¸
dx

I =

Z 4

2

1 dx− I

2I = 2
I = 1

54. Let u = 6 − x, so that du = − dx.
Then,

I =

Z 4

2

f(9− x)

f(9− x) + f(x+ 3)
dx

= −
Z 2

4

f(u+ 3)

f(u+ 3) + f(9− u)
du

=

Z 4

2

f(u+ 3)

f(u+ 3) + f(9− u)
du

=

Z 4

2

f(x+ 3)

f(x+ 3) + f(9− x)
dx

=

Z 4

2

∙
1− f(9− x)

f(x+ 3) + f(9− x)

¸
dx

I =

Z 4

2

1 dx− I

2I = 2
I = 1

55. Let 6−u = x+4; that is, let u = 2−x,
so that du = −dx.
Then,
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I =

Z 2

0

f(x+ 4)

f(x+ 4) + f(6− x)
dx

= −
Z 0

2

f(6− u)

f(6− u) + f(u+ 4)
du

=

Z 2

0

f(6− u)

f(6− u) + f(u+ 4)
du

=

Z 2

0

f(6− x)

f(6− x) + f(x+ 4)
dx

=

Z 2

0

f(6− x) + f(x+ 4)− f(x+ 4)

f(6− x) + f(x+ 4)
dx

=

Z 2

0

∙
1− f(x+ 4)

f(6− x) + f(x+ 4)

¸
dx

I =

Z 2

0

1dx− I

2I = 2
I = 1

56. Let u = x1/6, so that du = 1
6
x−5/6 dx.

Then,

I =

Z
1

x5/6 + x2/3
dx

=

Z
x−5/6 dx
1 + x−1/6

=

Z
6 du

1 + 1
u

=

Z
6u

u+ 1
du

Let v = u + 1, then dv = du and
u = v − 1. Then,
I =

Z
6u

u+ 1
du

=

Z
6(v − 1)

v
dv

=

Z µ
6− 6

v

¶
dv

= 6v − 6 ln |v|+ c
= 6(u+ 1)− 6 ln |u+ 1|+ c
= 6(x1/6 + 1)− 6 ln |x1/6 + 1|+ c

57. Let u = x1/6, so that

du = (1/6)x−5/6dx, which means
6u5du = dx.

Thus,Z
1√

x+ 3
√
x
dx

= 6

Z
u5

u3 + u2
du

= 6

Z
u3

u+ 1
du

= 6

Z ∙
u2 − u+ 1− 1

u+ 1

¸
du

= 6

∙
u3

3
− u2

2
+ u− ln |u+ 1|

¸
+ c

= 2x1/2 − 3x1/3 + 6x1/6
− 6 ln |x1/6 + 1|+ c

58. Let u = x1/q, then q du = x(1−q)/qdx,
and

I =

Z
1

x(p+1)/q + xp/q
dx

=

Z
x(1−q)/qdx

x(p+2−q)/q + x(p+1−q)/q
dx

= q

Z
1

up+2−q + up+1−q
du

= q

Z
uq−1−p

u+ 1
du

The rest of the calculation will de-
pend on the values of p and q.

59. First let u = ln
√
x, so that du =

x−1/2(1/2)x−1/2dx, so that 2du =
1

x
dx. Then,Z

1

x ln
√
x
dx = 2

Z
1

u
du

= 2 ln |u|+ c
= 2 ln | ln√x|+ c

Now use the substitution u = lnx, so
that du = 1

x
dx. Then,Z

1

x ln
√
x
dx =

Z
1

x ln(x1/2)
dx
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=

Z
1

x
¡
1
2

¢
lnx

dx

= 2

Z
1

u
du

= 2 ln |u|+ c1
= 2 ln | lnx|+ c1

The two results differ by a constant,
and so are equivalent, as can be seen
as follows:

2 ln | ln√x| = 2 ln | ln(x1/2)|
= 2 ln

¯̄̄̄
1

2
lnx

¯̄̄̄
= 2

∙
ln
1

2
+ ln | lnx|

¸
= 2 ln

1

2
+ 2 ln | lnx|

= 2 ln | lnx|+ constant

60. Let u = lnx2, then
du = (1/x2)2x dx = (2/x)dx, andZ

1

x lnx2
dx =

Z
du

2u

=
1

2
ln |u|+ c

=
1

2
ln | lnx2|+ c

Let u = lnx, then du = (1/x)dx, andZ
1

x lnx2
dx =

Z
1

x(2 lnx)
dx

=
1

2

Z
du

u

=
1

2
ln | lnx|+ c1

The above two answers are equiva-
lent, because

1

2
ln | lnx2| = 1

2
ln |2 lnx|

=
1

2
(ln 2 + ln | lnx|)

=
1

2
ln | lnx|+ ln 2

2

61. The point is that if we let u = x4,
then we get x = ±u1/4, and so we
need to pay attention to the sign of

u and x. A safe way is to solve the
original indefinite integral in terms of
x, and then solve the definite integral
using boundary points in terms of x.Z 1

−2
4x4dx =

Z x=1

x=−2
u1/4du

=
4

5
u5/4

¯̄̄x=1
x=−2

=
4

5
x5
¯̄̄x=1
x=−2

=
4

5
(15 − (−2)5)

=
4

5
(1− (−32))

=
4(33)

5
=
132

5

62. The problem is that it is not true on
the entire interval [0, π] that cosx =p
1− sin2 x. This is only true on the

interval [0, π/2]. To make this substi-
tution correctly, one must break up
the integral:Z π

0

cosx(cosx) dx

=

Z π/2

0

cosx(cosx) dx

+

Z π

π/2

cosx(cosx) dx

=

Z x=π/2

x=0

√
1− u2 du

−
Z x=π

x=π/2

√
1− u2 du

=

µ
u

2
+
sin−1 u
2

¶ ¯̄̄x=π/2
x=0

−
µ
u

2
+
sin−1 u
2

¶ ¯̄̄x=π
x=π/2

=

µ
sinx

2
+
sin−1(sinx)

2

¶ ¯̄̄x=π/2
x=0

−
µ
sinx

2
+
sin−1(sinx)

2

¶ ¯̄̄x=π
x=π/2
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=

µ
1

2
+

π

4

¶
− 0− 0 +

µ
1

2
+

π

4

¶
= 1 +

π

2

63. Let u = 1/x, so that du = −1/x2dx,
which means that
−1/u2du = dx. Then,Z 1

a

1

x2 + 1
dx = −

Z 1

1/a

1/u2

1/u2 + 1
du

=

Z 1/a

1

1

1 + u2
du

=

Z 1/a

1

1

1 + x2
dx

The last equation follows from the
previous one because u and x
are dummy variables of integration.
Thus,

tan−1 x
¯̄̄1
a
= tan−1 x

¯̄̄1/a
1

tan−1 1− tan−1 a = tan−1 1
a
− tan−1 1

tan−1 a+ tan−1
1

a
= 2 tan−1 1

tan−1 a+ tan−1
1

a
=

π

2

64. If u = 1/x, then du = −dx/x2 andZ
1

|x|√x2 − 1 dx

=

Z
1

x2
p
1− 1/x2 dx

= −
Z

1√
1− u2

du

= − sin−1 u+ c
= − sin−1 1/x+ c

On the other hand,Z
1

|x|√x2 − 1 dx = sec
−1 x+ c1

So − sin−1 1/x = sec−1 x+ c2

Let x = 1, we get
sin−1 1 = sec−1 1 + c2

π

2
= 0 + c2

c2 =
π

2

Hence − sin−1 1/x = sec−1 x+ π

2

65. x̄ =

R 2
−2 x
√
4− x2 dxR 2

−2
√
4− x2 dx

Examine the denominator of x̄, the
graph of

√
4− x2, which is indeed a

semicircle, is symmetric over the two
intervals [−2, 0] and [0, 2], while mul-
tiplying by x changes the symmetry
into anti-symmetry. In other words,Z 0

−2
x
√
4− x2 dx = −

Z 2

0

x
√
4− x2 dx

so thatZ 2

−2
x
√
4− x2 dx

=

Z 0

−2
x
√
4− x2 dx+

Z 2

0

x
√
4− x2 dx

= 0

Hence x̄ = 0.

Now the integral

Z 2

−2

√
4− x2 dx is

the area of a semicircle with radius
2, thus its value = (1/2)π22 = 2π.

Then

ȳ =

R 2
−2(
√
4− x2)2 dx

2
R 2
−2
√
4− x2 dx

=

R 2
−2(4− x2) dx

2 · 2π

=

R 0
−2(4− x2) dx+

R 2
0
(4− x2) dx

4π

=
2
R 2
0
(4− x2) dx

4π

=

R 2
0
(4− x2) dx

2π

=
1

2π

µ
4x− x3

3

¶ ¯̄̄2
0
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=
8

3π

66. These animals are likely to be found
0.7 miles from the pond.

0.4

0.2

0.3

x

20 0.5
0

1 1.5

0.1

Let u = −x2, then
du = −2x dx, u(0) = 0, u(2) = −4
andZ 2

0

xe−x
2

dx = −1
2

Z −4

0

eu du

= −1
2
(e−4 − 1) = 1− e−4

2

67. V (t) = Vp sin(2πft)V
2(t)

= V 2
p sin

2(2πft)

= V 2
p

µ
1

2
− 1
2
cos(4πft)

¶
=

V 2
p

2
(1− cos(4πft))

rms =

s
f

Z 1/f

0

V 2(t) dt

=

s
f

Z 1/f

0

V 2
p

2
(1− cos(4πft)) dt

=
Vp
√
f√
2

sZ 1/f

0

(1− cos(4πft)) dt

=
Vp
√
f√
2

sµ
t− sin(4πft

4πf

¶ ¯̄̄1/f
0

=
Vp
√
f√
2

r
1

f
=

Vp√
2

68.

Z 2

−2
f2(t) dt

=

Z −1

−2
1 dt+

Z 1

−1
t2 dt+

Z 2

1

1 dt

= 1 +
2

3
+ 1 =

8

3

rms =

s
1

4

Z 2

−2
f2(t) dt

=

s
1

4

µ
8

3

¶
=

r
2

3

t

0

1

2

0.5

0
1

-0.5

-1

-1-2

4.7 Numerical

Integration

1. Midpoint Rule:Z 1

0

¡
x2 + 1

¢
dx

≈ 1
4

∙
f

µ
1

8

¶
+ f

µ
3

8

¶
+ f

µ
5

8

¶
+f

µ
7

8

¶¸
=
85

64

Trapezoidal Rule:Z 1

0

¡
x2 + 1

¢
dx

≈ 1− 0
2(4)

∙
f(0) + 2f

µ
1

4

¶
+ 2f

µ
1

2

¶
+2f

µ
3

4

¶
+ f(1)

¸
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=
43

32
Simpson’s Rule:Z 1

0

¡
x2 + 1

¢
dx

=
1− 0
3(4)

∙
f(0) + 4f

µ
1

4

¶
+ 2f

µ
1

2

¶
+4f

µ
3

4

¶
+ f(1)

¸
=
4

3

2. Midpoint Rule:Z 2

0

(x2 + 1) dx

≈ 1
2

∙
f

µ
1

4

¶
+ f

µ
3

4

¶
+ f

µ
5

4

¶
+f

µ
7

4

¶¸
=
1

2

µ
17

16
+
25

16
+
41

16
+
65

16

¶
=
37

8

Trapezoidal Rule:Z 2

0

(x2 + 1) dx

≈ 1
4

∙
f(0) + 2f

µ
1

2

¶
+ 2f(1)

+2f

µ
3

2

¶
+ f(2)

¸
=
1

4

µ
1 +

5

2
+ 4 +

13

2
+ 5

¶
=
19

4

Simpson’s Rule:Z 2

0

(x2 + 1) dx

≈ 1
6

∙
f(0) + 4f

µ
1

2

¶
+ 2f(1)

+4f

µ
3

2

¶
+ f(2)

¸
=
1

6
(1 + 5 + 4 + 13 + 5) =

14

3

3. Midpoint Rule:Z 3

1

1

x
dx

≈ 3− 1
4

∙
f

µ
5

4

¶
+ f

µ
7

4

¶
+ f

µ
9

4

¶
+f

µ
11

4

¶¸
=
1

2

µ
4

5
+
4

7
+
4

9
+
4

11

¶
=
3776

3465

Trapezoidal Rule:Z 3

1

1

x
dx

≈ 3− 1
2(4)

∙
f(1) + 2f

µ
3

2

¶
+ 2f(2)

+2f

µ
5

2

¶
+ f(3)

¸
=
1

4

µ
1 +

4

3
+ 1 +

4

5
+
1

3

¶
=
67

60

Simpson’s Rule:Z 3

1

1

x
dx

≈ 3− 1
3(4)

∙
f(1) + 4f

µ
3

2

¶
+ 2f(2)

+4f

µ
5

2

¶
+ f(3)

¸
=
1

6

µ
1 +

8

3
+ 1 +

8

5
+
1

3

¶
=
11

10

4. Midpoint Rule:Z 1

−1
(2x− x2) dx

≈ 1
2

∙
f

µ
−3
4

¶
+ f

µ
−1
4

¶
+ f

µ
1

4

¶
+f

µ
3

4

¶¸
=
1

2

µ
−33
16
− 9

16
+
7

16
+
15

16

¶
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=
−5
8

Trapezoidal Rule:Z 1

−1
(2x− x2) dx

≈ 1
4

∙
f(−1) + 2f

µ
−1
2

¶
+ 2f(0)

+2f

µ
1

2

¶
+ f(1)

¸
=
1

4

µ
−3− 5

2
+ 0 +

3

2
+ 1

¶
= −3

4
Simpson’s Rule:Z 1

−1
(2x− x2) dx

≈ 1
6

∙
f(−1) + 4f

µ
−1
2

¶
+ 2f(0)

+4f

µ
1

2

¶
+ f(1)

¸
=
1

6
(−3− 5 + 0 + 3 + 1)

= −2
3

5. (a) Left Endpoints:Z 2

0

f(x) dx

≈ 2− 0
4

[f(0) + f(.5) + f(1)

+f(1.5)]

=
1

2
(1 + .25 + 0 + .25)

= .75

(b) Midpoint Rule:Z 2

0

f(x) dx

≈ 2− 0
4

[f(.25) + f(.75)

+f(1.25) + f(1.75)]

=
1

2
(.65 + .15 + .15 + .65)

= .7

(c) Trapezoidal Rule:Z 2

0

f(x) dx

≈ 2− 0
2(4)

[f(0) + 2f(.5) + 2f(1)

+2f(1.5) + f(2)]

=
1

4
(1 + .5 + 0 + .5 + 1)

= .75

6. (a) Left Endpoints:Z 2

0

f(x) dx

≈ 1
2
(f(0) + f(.5) + f(1) + f(1.5))

=
1

2
(0.5 + 0.8 + 0.5 + 0.1)

= 0.95

(b) Midpoint Rule:Z 2

0

f(x) dx

≈ 1
2
(0.7 + 0.8 + 0.4 + 0.2)

= 1.05

(c) Trapezoidal Rule:Z 2

0

f(x) dx

≈ 1
4
[0.5+2(0.8)+2(0.5)+2(0.1)

+ 0.5]
= 0.95

7.
n Midpoint Trapezoidal Simpson

10 0.5538 0.5889 0.5660
20 0.5629 0.5713 0.5655
50 0.5652 0.5666 0.5657

8.
n Midpoint Trapezoidal Simpson

10 0.386939 0.385578 0.386476
20 0.386600 0.386259 0.386485
50 0.386504 0.386450 0.386486
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9.
n Midpoint Trapezoidal Simpson

10 0.88220 0.88184 0.88207
20 0.88211 0.88202 0.88208
50 0.88209 0.88207 0.88208

10.
n Midpoint Trapezoidal Simpson

10 0.886210 0.886202 0.886207
20 0.886208 0.886206 0.886207
50 0.886207 0.886207 0.886207

11.
n Midpoint Trapezoidal Simpson

10 3.9775 3.9775 3.9775
20 3.9775 3.9775 3.9775
50 3.9775 3.9775 3.9775

12.
n Midpoint Trapezoidal Simpson

10 3.333017 3.336997 3.334337
20 3.334012 3.335007 3.334344
50 3.334291 3.334450 3.334344

13. The exact value of this integral isZ 1

0

5x4 dx = x5
¯̄̄1
0
= 1− 0 = 1

n Midpoint EMn

10 1.00832 8.3× 10−3
20 1.00208 2.1× 10−3
40 1.00052 5.2× 10−4
80 1.00013 1.3× 10−4

n Trapezoidal ETn
10 0.98335 1.6× 10−2
20 0.99583 4.1× 10−3
40 0.99869 1.0× 10−3
80 0.99974 2.6× 10−4

n Simpson ESn
10 1.000066 6.6× 10−5
20 1.0000041 4.2× 10−6
40 1.00000026 2.6× 10−7
80 1.00000016 1.6× 10−8

14. The exact value of this integral isZ 2

1

1

x
dx = ln 2

n Midpoint EMn

10 0.692835 3.1× 10−4
20 0.693069 7.8× 10−5
40 0.693128 2.0× 10−5
80 0.693142 4.9× 10−6

n Trapezoidal ETn

10 0.693771 6.2× 10−4
20 0.693303 1.6× 10−4
40 0.693186 3.9× 10−5
80 0.693157 9.8× 10−6

n Simpson ESn

10 0.693150 3.1× 10−6
20 0.693147 1.9× 10−7
40 0.693147 1.2× 10−8
80 0.693147 8.0× 10−10

15. The exact value of this integral isZ π

0

cosx dx = sinx
¯̄̄π
0
= 0

n Midpoint EMn

10 0 0
20 0 0
40 0 0
80 0 0

n Trapezoidal ETn
10 0 0
20 0 0
40 0 0
80 0 0

n Simpson ESn

10 0 0
20 0 0
40 0 0
80 0 0
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16. The exact value of this integral isZ π/4

0

cosx dx =
1√
2

n Midpoint EMn

10 0.707289 1.8× 10−4
20 0.707152 4.5× 10−5
40 0.707118 1.1× 10−5
80 0.707110 2.8× 10−6

n Trapezoidal ETn

10 0.706743 3.6× 10−4
20 0.707016 9.1× 10−5
40 0.707084 2.3× 10−5
80 0.707101 5.7× 10−6

n Simpson ESn

10 0.7071087 1.5× 10−7
20 0.7071068 9.5× 10−9
40 0.7071068 6× 10−10
80 0.7071068 6× 10−10

17. If you double n, the error in the Mid-
point Rule is divided by 4, the error
in the Trapezoidal Rule is divided by
4 and the error in the Simpson’s Rule
is divided by 16.

18. If you halve the interval length b− a,
the error in the Midpoint Rule is di-
vided by 8, the error in the Trape-
zoidal Rule is divided by 8 and the
error in the Simpson’s Rule is divided
by 32.

19. Midpoint Rule:
ln 4 ≈ 1.366162
Trapezoidal Rule:
ln 4 ≈ 1.428091
Simpson’s Rule:
ln 4 ≈ 1.391621

20. Midpoint Rule:
ln 8 ≈ 1.987287

Trapezoidal Rule:
ln 8 ≈ 2.289628
Simpson’s Rule:
ln 8 ≈ 2.137327

21. Midpoint Rule:
sin 1 ≈ 0.843666
Trapezoidal Rule:
sin 1 ≈ 0.837084
Simpson’s Rule:
sin 1 ≈ 0.841489

22. Midpoint Rule:
e2 ≈ 7.322986
Trapezoidal Rule:
e2 ≈ 7.521610110
Simpson’s Rule:
e2 ≈ 7.391210186

23. f(x) =
1

x
, f 00(x) =

2

x3
, f (4)(x) =

24

x5

Then K = 2, L = 24

Hence according to Theorems 9.1 and
9.2

|ET4| ≤ 2(4− 1)
3

12 · 42 ≈ 0.281

|EM4| ≤ 2(4− 1)
3

24 · 42 ≈ 0.141

|ES4| ≤ 24(4− 1)
5

180 · 44 ≈ 0.127

24. f(x) = cosx, f 00(x) = − cosx,
f (4)(x) = cosx
Then K = L = 1

Hence according to Theorems 9.1 and
9.2

|ET4| ≤ 1 1

12 · 42 ≈ 0.005

|EM4| ≤ 1 1

24 · 42 ≈ 0.003

|ES4| ≤ 1 1

180 · 44 ≈ 2.17× 10
−5
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25. Using Theorems 9.1 and 9.2, and the
calculation in Example 9.10, we find
the following lower bounds for the
number of steps needed to guarantee
accuracy of 10−7 in Exercise 19:

Midpoint:

r
2 · 33

24 · 10−7 ≈ 4745

Trapezoidal:

r
2 · 33

14 · 10−7 ≈ 6709

Simpson’s:
4

r
24 · 35

180 · 10−7 ≈ 135

26. Midpoint: |En|K (b− a)3

24n2
=

1

24n2

We want
1

24n2
≤ 107

24n2 ≥ 107

n2 ≥ 10
7

24

n ≥
r
107

24
≈ 645.5

So need n ≥ 646.

Trapezoid: |ETn|K (b− a)3

12n2
=

1

12n2

We want n2 ≥ 10
7

12

n ≥
r
107

12
≈ 912.87

n ≥ 913

Simpson: |ESn|L(b− a)5

180n4
=

1

180n4

1

180n4
≤ 10−7

180n4 ≥ 107

n4 ≥ 107

180

n ≥ 4

r
107

180
≈ 15.4

So need n ≥ 16.
27. We use K = 60, L = 120.

n |EMn| Error bound

10 8.3× 10−3 2.5× 10−2

n |ETn| Error bound

10 1.6× 10−2 5× 10−2

n |ESn| Error bound

10 7.0× 10−5 6.6× 10−3

28. We use K = L = 1.

n |EMn| Error bound
10 0 1.3× 10−2

n |ETn| Error bound
10 0 2.6× 10−2

n |ESn| Error bound
10 0 1.7× 10−4

29. Trapezoidal Rule:Z 2

0

f(x) dx

≈ 2− 0
2(8)

[f(0) + 2f(0.25) + 2f(0.5)

+ 2f(.75) + 2f(1) + 2f(1.25)
+2f(1.5) + 2f(1.75) + f(2)]

=
1

8
[4.0 + 9.2 + 10.4 + 9.6 + 10

+9.2 + 8.8 + 7.6 + 4.0]
= 9.1

Simpson’s Rule:Z 2

0

f(x) dx

≈ 2− 0
3(8)

[f(0) + 4f(.25) + 2f(.5)

+4f(.75)+2f(1)+4f(1.25)+2f(1.5)
+4f(1.75) + f(2)]

=
1

12
(4.0 + 18.4 + 10.4 + 19.2 + 10

+ 18.4 + 8.8 + 15.2 + 4.0)
≈ 9.033

30. Trapezoidal Rule:Z 2

0

f(x) dx

≈ 0.25
2
[f(0) + 2f(0.25) + 2f(0.5)

+ 2f(0.75) + 2f(1) + 2f(1.25)
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+ 2f(1.5) + 2f(1.75) + f(2)]

=
0.25

2
[(1.0)+2(0.6)+2(0.2)+2(−0.2)

+2(−0.4)+2(0.4)+2(0.8)+2(1.2)
+ (2.0)]

= 1.025

Simpson’s Rule:Z 2

0

f(x) dx

≈ 0.25
3
[f(0) + 4f(0.25) + 2f(0.5)

+ 4f(0.75) + 2f(1) + 4f(1.25)
+ 2f(1.5) + 4f(1.75) + f(2)]

=
0.25

3
[(1.0)+4(0.6)+2(0.2)+4(−0.2)

+2(−0.4)+4(0.4)+2(0.8)+4(1.2)
+ (2.0)]
≈ 1.016667

31. Simpson’s Rule:Z 120

0

f(x) dx

≈ 120− 0
3(12)

[f(0) + 4f(10) + 2f(20)

+4f(30)+2f(40)+4f(50)+2f(60)
+ 4f(70) + 2f(80) + 4f(90)
+ 2f(100) + 4f(110) + f(120)]

=
10

3
(56+216+116+248+116+232

+124+224+104+192+80+128+22)
≈ 6193

32. Simpson’s Rule:Z 120

0

f(x) dx

≈ 10
3
[f(0)+4f(10)+2f(20)+4f(30)

+2f(40)+4f(50)+2f(60)+4f(70)
+ 2f(80) + 4f(90) + 2f(100)
+ 4f(110) + f(120)]

=
10

3
[26 + 4(30) + 2(28) + 4(22)

+2(28)+4(32)+2(30)+4(33)+2(31)
+ 4(28) + 2(30) + 4(32) + (22)]

= 3500

33. Simpson’s Rule:

Z 24

0

v(t) dt

≈ 12− 0
3(12)

[f(0) + 4f(1) + 2f(2)

+ 4f(3) + 2f(4) + 4f(5) + 2f(6)
+ 4f(7) + 2f(8) + 4f(9) + 2f(10)
+ 4f(11) + f(12)]

=
1

3
(40 + 168 + 80 + 176 + 96 + 200

+ 92 + 184 + 84 + 176 + 80 + 168
+ 42)

= 529

34. Simpson’s Rule:Z 24

0

v(t) dt

≈ 2
3
[f(0) + 4f(2) + 2f(4) + 4f(6)

+2f(8)+4f(10)+2f(12)+4f(14)
+2f(16)+4f(18)+2f(20)+4f(22)
+ f(24)]

=
2

3
[(26)+4(30)+2(28)+4(30)+2(28)

+4(32)+2(30)+4(33)+2(31)+4(28)
+ 2(30) + 4(32) + (32)]

= 728

35. Simpson’s Rule:Z 2.4

0

f(x) dx

≈ 2.4− 0
3(12)

[f(0) + 4f(.2) + 2f(.4)

+ 4f(.6) + 2f(.8) + 4f(1) + 2f(1.2)
+4f(1.4)+2f(1.6)+4f(1.8)+2f(2)
+ 4f(2.2) + f(2.4)]

=
1

15
(0 + .8 + .8 + 4 + 3.2 + 8 + 4.4

+ 8 + 3.2 + 4.8 + 1.2 + .8 + 0)
≈ 2.6

36. Simpson’s Rule:Z 2.4

0

f(x) dx

≈ 0.2
3
[f(0) + 4f(0.2) + 2f(0.4)

+ 4f(0.6) + 2f(0.8) + 4f(1.0)
+ 2f(1.2) + 4f(1.4) + 2f(1.6)
+ 4f(1.8) + 2f(2) + 4f(2.2)
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+ f(2.4)]

=
0.2

3
[0 + 4(0.1) + 2(0.4) + 4(0.8)

+ 2(1.4) + 4(1.8) + 2(2.0)
+ 4(2.0) + 2(1.6) + 4(1.2)
+ 2(0.6) + 4(0.2) + 0]
≈ 2.426667

37. a) Midpoint Rule:

Mn <

Z b

a

f(x) dx

b) Trapezoidal Rule:

Tn >

Z b

a

f(x) dx

c) Simpson’s Rule:
not enough information.

38. a) Midpoint Rule:

Mn <

Z b

a

f(x) dx

b) Trapezoidal Rule:

Tn >

Z b

a

f(x) dx

c) Simpson’s Rule:

Sn ≥
Z b

a

f(x) dx

39. a) Midpoint Rule:

Mn >

Z b

a

f(x) dx

b) Trapezoidal Rule:

Tn <

Z b

a

f(x) dx

c) Simpson’s Rule:
not enough information.

40. a) Midpoint Rule:

Mn >

Z b

a

f(x) dx

b) Trapezoidal Rule:

Tn <

Z b

a

f(x) dx

c) Simpson’s Rule:

Sn ≤
Z b

a

f(x) dx

41. a) Midpoint Rule:

Mn <

Z b

a

f(x) dx

b) Trapezoidal Rule:

Tn >

Z b

a

f(x) dx

c) Simpson’s Rule:

Sn =

Z b

a

f(x) dx

42. a) Midpoint Rule:

Mn =

Z b

a

f(x) dx

b) Trapezoidal Rule:

Tn =

Z b

a

f(x) dx

c) Simpson’s Rule:

Sn =

Z b

a

f(x) dx

43.
1

2
(RL +RR)

=
n−1X
i=0

f(xi) +
nX
i=1

f(xi)

= f(x0)+
n−1X
i=1

f(xi)+
n−1X
i=1

f(xi)+f(xn)

= f(x0) + 2
n−1X
i=1

f(xi) + f(xn) = Tn

44.
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x

y

0 0.5 1

2

1

45. I1 =

Z 1

0

√
1− x2 dx is one fourth of

the area of a circle with radius 1, soZ 1

0

√
1− x2 dx =

π

4

I2 =

Z 1

0

1

1 + x2
dx = arctanx

¯̄̄1
0

= arctan 1− arctan 0 = π

4

n Sn(
√
1− x2) Sn(

1
1+x2

)

4 0.65652 0.78539
8 0.66307 0.78539

The second integral

Z
1

1 + x2
dx pro-

vides a better algorithm for estimat-
ing π.

46.

Z h

−h
(Ax2 +Bx+ c) dx

=

µ
A

3
x3 +

B

2
x2 + cx

¶ ¯̄̄h
−h

=
2

3
Ah3 + 2Ch

=
h

3
(2Ah2 + 6C)

=
h

3
[f(−h) + 4f(0) + f(h)]

47. (a)

Z 1

−1
x dx = 0µ
− 1√

3

¶
+

µ
1√
3

¶
= 0

(b)

Z 1

−1
x2 dx =

2

3

µ
− 1√

3

¶2
+

µ
1√
3

¶2
=
2

3

(c)

Z 1

−1
x3 dx = 0µ
− 1√

3

¶3
+

µ
1√
3

¶3
= 0

48. Simpson’s Rule with n = 2:Z 1

−1
π cos

³πx
2

´
dx

≈ 2
6
(f(−1) + 4f(−1/3) + f(1))

=
1

3
(π cos(−π/2) + 4π cos(−π/6)

+π cos(π/2))

=
π

3
(0 + 2

√
3 + 0) =

2π√
3

≈ 3.6276
Gaussian quadrature:Z 1

−1
π cos

³πx
2

´
dx

≈ f(−1/
√
3) + f(1/

√
3)

= π cos

µ
− π

2
√
3

¶
+ π cos

µ
π

2
√
3

¶
≈ 3.87164

49. Simpson’s Rule is not applicable be-

cause
sinx

x
is not defined at x = 0.

L = lim
x→0

sinx

x

= lim
x→0

cosx

1
= cos 0 = 1

The two functions f(x) and
sinx

x
dif-

fer only at one point x = 0, soZ π

0

f(x) dx =

Z π

0

sinx

x
dx

We can now apply Simpson’s Rule
with n = 2:Z π

0

f(x) dx

≈ π

6

µ
1 +

4 sinπ

π/2
+
sinπ

π

¶
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=
π

2

µ
1

3
+
8

3π

¶
≈ π

2
· 1.18

50. The function sinx
x

is not defined at
x = 0, and it is symmetric across the
y-axis. We define a new function

f(x) =

½
sinx/x if x 6= 0
1 if x = 0

over the interval [0, π/2], andZ π/2

−π/2

sinx

x
dx = 2

Z π/2

0

f(x) dx

Use Simpson’s Rule on n = 2:Z π/2

0

f(x) dx

≈ π

12

Ã
1 +

√
2
2

π/4
+

1

π/2

!
≈ π

2
· 15.22

HenceZ π/2

−π/2

sinx

x
dx ≈ π

2
· 30.44

51. Let I be the exact integral. Then we
have
Tn − I ≈ −2(Mn − I)
Tn − I ≈ 2I − 2Mn

Tn + 2Mn ≈ 3I
Tn
3
+
2

3
Mn ≈ I

52. The text does not say this, but we
want to show that
1

3
Tn +

2

3
Mn = S2n

In this case, we have data points:
x0, x1, x2, x3, . . . , x2n.

The midpoint rule will use the points:
x1, x3, . . . , x2n−1

The trapezoidal rule will use the
points:

x0, x2, . . . , x2n

1

3
Tn +

2

3
Mn

=

µ
1

3

¶µ
b− a

2n

¶
[f(x0) + 2f(x2)

+2f(x4)+ · · ·+2f(x2n−2)+f(x2n)]

+

µ
2

3

¶µ
b− a

n

¶
[f(x1) + f(x3)

+ f(x5) + · · ·+ f(x2n−1)]

=

µ
b− a

6n

¶
[f(x0)4f(x1) + 2f(x2)

+4f(x3)+2f(x4)+ · · ·+2f(x2n−2)
+ 4f(x2n−1) + f(x2n)]

= S2n

4.8 The Natural

Logarithm As An

Integral

1. ln 4 = ln 4− ln 1 = lnx
¯̄̄4
1
=

Z 4

1

dx

x

1.2

0.8

0.4

0
531

1

0.2

40

1.4

x

0.6

2

2. ln 5 =

Z 5

1

dx

x

1

0.6

0.2

531

1.4

1.2

0.8

0.4

0

x

6420
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3. ln 8.2 =

Z 8.2

1

dx

x

1.2

0.8

0.4

0
840

1.4

1

0.6

0.2

x

62

4. ln 24 =

Z 24

1

dx

x

1.2

0.8

0.4

0
3020100

1.4

1

0.6

0.2

x

25155

5. ln 4 =

Z 4

1

dx

x

≈ 3

12

µ
1

1
+ 4

1

1.75
+ 2

1

1.5
+ 4

1

3.25
+
1

4

¶
≈ 1.3868

6. ln 5 =

Z 5

1

dx

x

≈ 4

12

µ
1

1
+ 4

1

2
+ 2

1

3
+ 4

1

4
+
1

5

¶
≈ 1.6108

7. (a) Simpson’s Rule with n = 32:

ln 4 =

Z 4

1

dx

x
≈ 1.386296874

(b) Simpson’s Rule with n = 64:

ln 4 =

Z 4

1

dx

x
≈ 1.386294521

8. (a) Simpson’s Rule with n = 32:

ln 4 =

Z 4

1

dx

x
≈ 1.609445754

(b) Simpson’s Rule with n = 64:

ln 4 =

Z 4

1

dx

x
≈ 1.609438416

9.
7

2
ln 2

10. ln 2

11. ln

Ã
32 ·√3
9

!
=
1

2
ln 3

12. ln

µ 1
9
· 1
9

3

¶
= −5 ln 3

13.
1√

x2 + 1
· 1
2
(x2 + 1)−

1
2 · 2x

14.
5x4 sinx cosx+ x5 cos2 x− x5 sinx

x5 sinx cosx

15.
x5 + 1

x4
· 4x

3(x5 + 1)− x4(5x4)

(x5 + 1)2

16.

r
x5 + 1

x3
· 1
2
·
µ

x3

x5 + 1

¶−1/2
· 3x

2(x5 + 1)− x3(5x4)

(x5 + 1)2

17.

Z
3x3

x4 + 5
dx =

3

4
ln |x4 + 5|+ c

=
3

4
ln(x4 + 5) + c

18.

Z
1√

x(
√
x+ 1)

= 2 ln |√x+ 1|+ c

= 2 ln(
√
x+ 1) + c

19.

Z
1

x lnx
dx = ln | lnx|+ c

20.

Z
1√

1− x2 sin−1 x
dx

= ln | sin−1 x|+ c
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21.

Z
e2x

1 + e2x
dx =

1

2
ln |1 + e2x)|+ c

=
1

2
ln(1 + e2x) + c

22. Let u = ex, du = ex dxZ
ex

1 + e2x
dx =

Z
du

1 + u2

= tan−1 u+ c = tan−1 ex + c

23. Let u = 2/x, du = (−2/x2) dxZ
e2/x

x2
dx = −1

2

Z
eu du

= − 1

2eu
+ c = −1

2
e2/x + c

24. Let u = lnx3, du = (3/x) dxZ
sin(lnx3)

x
dx =

1

3

Z
sinu du

= −1
3
cosu+ c

= −1
3
cos(lnx3) + c

25.

Z 1

0

x2

x3 − 4 dx =
1

3
ln |x3 − 4|

¯̄̄1
0

=
1

3
ln 3− 1

3
ln 4 =

1

3
ln
3

4

26.

Z 1

0

ex − e−x

ex + e−x
dx = ln |ex + e−x|

¯̄̄1
0

= ln(e+ e−1)− ln 2
= ln

µ
e+ e−1

2

¶

27.

Z 1

0

tanx dx =

Z 1

0

sinx

cosx
dx

= − ln | cosx|
¯̄̄1
0

= − ln | cos 1|− ln | cos 0|
= − ln(cos 1)

28. Let u = lnx, du = dx/x

Z
lnx

x
dx =

Z
u dx =

u2

2
+ c

=
(lnx)2

2
+ cZ 2

1

lnx

x
dx =

(lnx)2

2

¯̄̄2
1

=
ln2 2

2
− ln

2 1

2
=
ln2 2

2

29.

Z 1

0

ex − 1
e2x

dx =

Z 1

0

(e−x − e−2x) dx

=

µ
−e−x + 1

2
e−2x

¶ ¯̄̄1
0

= − e−1 +
1

2
e−2 +

1

2

30.

Z e2

e

1

x lnx
dx = ln | lnx|

¯̄̄e2
e

= ln | ln e2|− ln | ln e| = ln 2− ln 1
= ln 2

31.

y

3

2

1

0

-1

-2

-3

x

6543210

32.

y

3

2

1

0

-1

-2

-3

x

3210-1-2-3
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33.

y

4

3

2

1

0

x

3210-1-2-3

34.

y

3

2

1

0

-1

-2

-3

x

3210-1-2-3

35.

y

3

2

1

0

-1

x

3210-1

36.

y

3

2

1

0

-1

x

3210-1

37. ln
³a
b

´
= ln

µ
a · 1

b

¶
= ln a+ ln

µ
1

b

¶
= ln a− ln b

38. Let y = ex = lim
n→∞

xn,

where xn = (1 + x/n)n

Then
x1/nn = 1 + x/n
n(x1/nn − 1) = x.

On the other hand,
y = ex, so
ln y = x = n(x1/nn − 1)
Take limits on both sides, we get
ln y = lim

n→∞
n(x1/nn − 1)

= lim
n→∞

n(y1/n − 1)

39. f(x) =
1

1 + e−x

y

2

1.5

1

0.5

0

-0.5

-1

x

3210-1-2-3

Using lim
x→∞

e−x = 0 we get

lim
x→∞

1

1 + e−x
= 1

Using lim
x→−∞

e−x =∞ we get

lim
x→∞

1

1 + e−x
= 0

The function f(x) is increasing over
(−∞,∞) and when x = 0,

f(0) =
1

1 + 1
=
1

2
.

So g(x) =

½
0 if x < 0
1 if x ≥ 0

The threshold value for g(x) to switch
is x = 0.
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One way of modifying the function to
move the threshold to x = 4 is to let

f(x) =
1

1 + e−(x−4)

40. 1− (9/10)10 ≈ 0.65132
1− (19/20)20 ≈ 0.64151
1− (9/10)10 > 1− (19/20)20
The probability of winning is lower.

When taking the limit as n→∞,
lim
n→∞

∙
1−

µ
n− 1
n

¶n¸
= 1− lim

n→∞

µ
n− 1
n

¶n

= 1− lim
n→∞

µ
1 +
−1
n

¶n

= 1− e−1

41. h = ln eh =

Z eh

1

1

x
dx =

eh − 1
x̄

,

for some x̄ in (0, h)
eh − 1
h

= x̄

as h→ 0+, x̄→ 0, then

lim
h→0+

eh − 1
h

= 0

−h = ln e−h

=

Z e−h

1

1

x
dx =

e−h − 1
x̄

,

for some x̄ in (−h, 0)
e−h − 1
−h = x̄

as h→ 0+,−h→ 0−, x̄→ 0, then

lim
h→0+

e−h − 1
−h = 0

42. f(x) = lnx, then

f 0(x) =
1

x
and f 0(1) = 1.

On the other hand

f 0(a) = lim
x→a

lnx− ln a
x− a

f 0(1) = lim
x→1

lnx− ln 1
x− 1 = 1

lim
x→1

lnx

x− 1 = 1

Thus the reciprocal of
lnx

x− 1 has the
same limit,

lim
x→1

x− 1
lnx

= 1

Substituting x = eh,

lim
h→0

eh − 1
h

= 1

43. ln

∙
lim
n→∞

µ
1 +

1

n

¶n¸
= lim

n→∞
ln

µ
1 +

1

n

¶n

= lim
n→∞

n ln

µ
1 +

1

n

¶
= lim

n→∞
ln(1 + 1/n

)
1/n

= lim
n→∞

−1/n2
−1/n2(1 + 1/n)

= lim
n→∞

1

1 + 1/n

= 1

44. f(x) = lnx− 1
f 0(x) =

1

x

x0 = 3

x1 = x0 − f(x0)

f 0(x0)
= 3− ln 3− 1

1/3

= 6− 3 ln 3 ≈ 2.704163133
x2 = x1 − f(x1)

f 0(x1)
≈ 2.718245098

x3 = x2 − f(x2)

f 0(x2)
≈ 2.718281827

e ≈ 2.718282183
Three steps are needed to start at
x0 = 3 and obtain five digits of ac-
curacy.



CHAPTER 4 REVIEW EXERCISES 333

45. s(x) = x2 ln(1/x)
s0(x) = 2x ln 1/x+ x2 · x · (−1/x2)
= 2x ln(1/x)− x = x(2 ln(1/x)− 1)
s0(x) = 0 gives
x = 0 (which is impossible) or
ln(1/x) = 1/2, x = e−1/2

Since s0(x)
½

< 0 if x < e−1/2

> 0 if x > e−1/2

The value x = e−1/2 maximizes the
transmission speed.

Ch. 4 Review Exercises

1.

Z
(4x2 − 3) dx = 4

3
x3 − 3x+ c

2.

Z
(x− 3x5) dx = x2

2
− 1
2
x6 + c

3.

Z
4

x
dx = 4 ln |x|+ c

4.

Z
4

x2
dx = −4

x
+ c

5.

Z
2 sin 4x dx = −1

2
cos 4x+ c

6.

Z
3 sec2 x dx = 3 tanx+ c

7.

Z
(x− e4x) dx =

x2

2
− 1
4
e4x + c

8.

Z
3
√
x dx = 2x3/2 + c

9.

Z
x2 + 4

x
dx =

Z
(x+ 4x−1) dx

=
x2

2
+ 4 ln |x|+ c

10.

Z
x

x2 + 4
dx =

1

2
ln(x2 + 4) + c

11.

Z
ex(1− e−x) dx =

Z
(ex − 1) dx

= ex − x+ c

12.

Z
ex(1 + ex)2 dx

=

Z
(ex + 2e2x + e3x) dx

= ex + e2x +
1

3
e3x + c

13. Let u = x2 + 4, then du = 2x dx andZ
x
√
x2 + 4 dx

=
1

2

Z
u1/2 du =

1

3
u3/2 + c

=
1

3
(x2 + 4)3/2 + c

14.

Z
x(x2 + 4) dx =

Z
(x3 + 4x) dx

=
x4

4
+ 2x2 + c

15. Let u = x3, du = 3x2 dxZ
6x2 cosx3 dx = 2

Z
cosu du

= 2 sinu+ c = 2 sinx3 + c

16. Let u = x2, du = 2x dxZ
4x secx2 tanx2 dx

= 2

Z
secu tanu du

= 2 secu+ c = 2 secx2 + c

17. Let u = 1/x, du = −1/x2 dxZ
e1/x

x2
dx = −

Z
eu du

= −eu + c = −e1/x + c

18. Let u = lnx, du = dx/xZ
lnx

x
dx =

Z
u du

=
u2

2
+ c =

(lnx)2

2
+ c

19.

Z
tanx dx =

Z
sinx

cosx
dx

= − ln | cosx|+ c
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20. Let u = 3x+ 1, du = 3 dxZ √
3x+ 1dx =

1

3

Z
u1/2 du

=
1

3
· 2
3
u3/2 + c =

2

9
(3x+ 1)3/2 + c

21. f(x) =

Z
(3x2 + 1) dx = x3 + x+ c

f(0) = c = 2
f(x) = x3 + x+ 2

22. f(x) =

Z
e−2x dx = −1

2
e−2x + c

f(0) = −1
2
+ c = 3

c =
7

2

f(x) = −1
2
e−2x +

7

2

23. s(t) =

Z
(−32t+ 10) dt

= −16t2 + 10t+ c
s(0) = c = 2
s(t) = −16t2 + 10t+ 2

24. v(t) =

Z
6 dt = 6t+ c1

v(0) = c1 = 10
v(t) = 6t+ 10

s(t) =

Z
(6t+ 10) dt = 3t2 + 10t+ c2

s(0) = c2 = 0
s(t) = 3t2 + 10t

25.
6X

i=1

(i2 + 3i)

= (12+3 ·1)+(22+3 ·2)+(32+3 ·3)
+ (42+3 · 4)+ (52+3 · 5)+ (62+3 · 6)
= 4 + 10 + 18 + 28 + 40 + 54
= 154

26.
12X
i=1

i2 = 650

27.
100X
i=1

(i2 − 1)

=
100X
i=1

i2 −
100X
i=1

1

=
100(101)(201)

6
− 100

= 338, 250

28.
100X
i=1

(i2 + 2i)

=
100X
i=1

i2 + 2 ·
100X
i=1

i

=
100(101)(201)

6
+ 100(101)

= 348, 450

29.
1

n3

nX
i=1

(i2 − i)

=
1

n3

Ã
nX
i=1

i2 − ·
nX
i=1

i

!

=
1

n3

µ
n(n+ 1)(2n+ 1)

6
− n(n+ 1)

2

¶
=
(n+ 1)(2n+ 1)

6n2
− n+ 1

2n2

lim
n→∞

1

n3

nX
i=1

(i2 − i)

= lim
n→∞

µ
(n+ 1)(2n+ 1)

6n2
− n+ 1

2n2

¶
=
2

6
− 0 = 1

3

30. Evaluation points: 0.25, 0.75, 1.25, 1.75

Riemann sum = ∆x
nX
i=1

f(ci)

=
2

4

4X
i=1

(c2i − 2ci)

=
1

2

£
(0.252 − 2 · 0.25) + (0.752 − 2 · 0.75)

+(1.252 − 2 · 1.25) + (1.752 − 2 · 1.75)¤
= −2.75
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1

-0.4

0

-0.8

0.4

0.50

x

1.5 2

31. Riemann sum =
2

8

8X
i=1

c2i = 2.65625

32. Riemann sum =
2

8

8X
i=1

c2i = 0.6875

33. Riemann sum =
3

8

8X
i=1

c2i ≈ 4.668

34. Riemann sum =
1

8

8X
i=1

c2i ≈ 0.6724

35. (a) Left-endpoints:Z 1.6

0

f(x) dx

≈ 1.6− 0
8

(f(0) + f(.2) + f(.4)

+f(.6)+f(.8)+f(1)+f(1.2)
+ f(1.4))

=
1

5
(1+1.4+1.6+2+2.2+2.4

+ 2 + 1.6)
= 2.84

(b) Right-endpoints:Z 1.6

0

f(x) dx

≈ 1.6− 0
8

(f(.2) + f(.4) + f(.6)

+f(.8)+f(1)+f(1.2)+f(1.4)
+ f(1.6))

=
1

5
(1.4 + 1.6 + 2 + 2.2 + 2.4

+ 2 + 1.6 + 1.4)
= 2.92

(c) Trapezoidal Rule:Z 1.6

0

f(x) dx

≈ 1.6− 0
2(8)

[f(0) + 2f(.2) + 2f(.4)

+ 2f(.6) + 2f(.8) + 2f(1)
+ 2f(1.2) + 2f(1.4) + f(1.6)]

= 2.88

(d) Simpson’s Rule:Z 1.6

0

f(x) dx

≈ 1.6− 0
3(8)

[f(0)+4f(.2)+2f(.4)

+ 4f(.6) + 2f(.8) + 4f(1)
+ 2f(1.2) + 4f(1.4) + f(1.6)]
≈ 2.907

36. (a) Left-endpoints:Z 4.2

1

f(x) dx

≈ (0.4)[f(1.0) + f(1.4) + f(1.8)
+ f(2.2) + f(2.6) + f(3.0)
+ f(3.4) + f(3.8)]

= (0.4)(4.0 + 3.4 + 3.6 + 3.0
+ 2.6 + 2.4 + 3.0 + 3.6)

= 10.24

(b) Right-endpoints:Z 4.2

1

f(x) dx

≈ (0.4)[f(1.4) + f(1.8) + f(2.2)
+ f(2.6) + f(3.0) + f(3.4)
+ f(3.8) + f(4.2)]

= (0.4)(3.4 + 3.6 + 3.0 + 2.6
+ 2.4 + 3.0 + 3.6 + 3.4)

= 10.00

(c) Trapezoidal Rule:Z 4.2

1

f(x) dx

≈ 0.4
2
[f(1.0)+2f(1.4)+2f(1.8)

+ 2f(2.2) + 2f(2.6) + 2f(3.0)
+ 2f(3.4) + 2f(3.8) + f(4.2)]

= (0.2)[4.0 + 2(3.4) + 2(3.6)
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+ 2(3.0) + 2(2.6) + 2(2.4)
+ 2(3.0) + 2(3.6) + 3.4]

= 10.12

(d) Simpson’s Rule:Z 4.2

1

f(x) dx

≈ 0.4
3
[f(1.0)+4f(1.4)+2f(1.8)

+ 4f(2.2) + 2f(2.6) + 4f(3.0)
+2f(3.4) +4f(3.8)+f(4.2)]

=
0.4

3
[4.0 + 4(3.4) + 2(3.6)

+ 4(3.0) + 2(2.6) + 4(2.4)
+ 2(3.0) + 4(3.6) + 3.4]
≈ 10.05333

37. See Example 7.10.

Simpson’s Rule is expected to be most
accurate.

38. In this situation, the Midpoint Rule
will be less than the actual integral.
The Trapezoid Rule will be an over-
estimate.

39. We will compute the area An of n
rectangles using right endpoints. In
this case ∆x = 1

n
and xi =

i
n

An =
nX
i=1

f(xi)∆x =
1

n

nX
i=1

f

µ
i

n

¶

=
1

n

nX
i=1

2 ·
µ
i

n

¶2
=
2

n3

nX
i=1

i2

=

µ
2

n3

¶
n(n+ 1)(2n+ 1)

6

=
(n+ 1)(2n+ 1)

3n2

Now, to find the integral, we take the
limit:Z 1

0

x2 dx = lim
n→∞

An

= lim
n→∞

(n+ 1)(2n+ 1)

3n2

=
2

3

40. We will compute the area An of n
rectangles using right endpoints. In

this case ∆x =
2

n
and xi =

2i

n

An =
nX
i=1

f(xi)∆x =
2

n

nX
i=1

f

µ
2i

n

¶

=
2

n

nX
i=1

µ
2i

n

¶2
+ 1

=
8

n3

nX
i=1

i2 +
2

n

nX
i=1

1

=

µ
8

n3

¶
n(n+ 1)(2n+ 1)

6
+

µ
2

n

¶
n

=
4(n+ 1)(2n+ 1)

3n2
+ 2

Now, to find the integral, we take the
limit:Z 2

0

(x2 + 1) dx = lim
n→∞

An

= lim
n→∞

µ
4(n+ 1)(2n+ 1)

3n2
+ 2

¶
=
8

3
+ 2 =

14

3

41. Area =

Z 3

0

(3x− x2) dx

=

µ
3x2

2
− x3

3

¶ ¯̄̄3
0
=
9

2

42. Area

=

Z 1

0

(x3 − 3x2 + 2x) dx

−
Z 2

1

(x3 − 3x2 + 2x) dx

=
1

4
+
1

4
=
1

2

43. The velocity is always positive, so dis-
tance traveled is equal to change in
position.
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Dist =

Z 2

1

(40− 10t) dt

= (40t− 5t2)
¯̄̄2
1
= 25

44. The velocity is always positive, so dis-
tance traveled is equal to change in
position.

Dist =

Z 2

0

20e−t/2 dt = (−40e−t/2)
¯̄̄2
0

= 40(−e−1 + 40) ≈ 25.2848

45. fave =
1

2

Z 2

0

ex dx =
e2 − 1
2
≈ 3.19

46. fave =
1

4

Z 4

0

(4x− x2) dx =
8

3

47.

Z 2

0

(x2−2) dx =
µ
x3

3
− 2x

¶ ¯̄̄2
0
= −4

3

48.

Z 1

−1
(x3−2x) dx =

µ
x4

4
− x2

¶ ¯̄̄1
−1
= 0

49.

Z π/2

0

sin 2x dx = −1
2
cos 2x

¯̄̄π/2
0
= 1

50.

Z π/4

0

sec2 x dx = tanx
¯̄̄π/4
0
= 1

51.

Z 10

0

(1− e−t/4) dt

=
¡
t+ 4e−t/4

¢ ¯̄̄10
0
= 6 + 4e−5/2

52.

Z 1

0

te−t
2

dt

=

µ
−1
2
e−t

2

¶ ¯̄̄1
0
= −1

2
(e−1 − 1)

53.

Z 2

0

x

x2 + 1
dx =

1

2
ln |x2 + 1|

¯̄̄2
0

=
ln 5

2

54.

Z 2

1

lnx

x
dx =

µ
ln2 x

2

¶ ¯̄̄2
1
=
ln2 2

2

55.

Z 2

0

x
√
x2 + 4 dx

=

µ
1

2
· 2
3
· (x2 + 4)3/2

¶ ¯̄̄2
0

=
16
√
2− 8
3

56.

Z 2

0

x(x2 + 1) dx

=

µ
1

4
(x2 + 1)2

¶ ¯̄̄2
0
= 6

57.

Z 1

0

(ex − 2)2 dx =
Z 1

0

(e2x−4e
x+4) dx

=

µ
1

2
e2x − 4ex + 4x

¶ ¯̄̄2
0

=

µ
e2

2
− 4e+ 4

¶
−
µ
1

2
− 4
¶

=
e2

2
− 4e+ 15

2

58.

Z π

−π
cos(x/2) dx

= (2 sin(x/2))
¯̄̄π
−π
= 4

59. f 0(x) = sinx2 − 2

60. f 0(x) =
p
(x2)2 + 1 · 2x

61. a) Midpoint Rule:Z 1

0

√
x2 + 4 dx

≈ 1− 0
4

∙
f

µ
1

8

¶
+ f

µ
3

8

¶
+f

µ
5

8

¶
+ f

µ
7

8

¶¸
≈ 2.079

b) Trapezoidal Rule:Z 1

0

√
x2 + 4 dx

≈ 1− 0
2(4)

∙
f(0) + 2f

µ
1

4

¶
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+2f

µ
1

2

¶
+ 2f

µ
3

4

¶
+f(1)]

≈ 2.083

c) Simpson’s Rule:Z 1

0

√
x2 + 4 dx

≈ 1− 0
3(4)

∙
f(0) + 4f

µ
1

4

¶
+2f

µ
1

2

¶
+ 4f

µ
3

4

¶
+ f(1)

¸
≈ 2.080

62. a) Midpoint Rule:Z 2

0

e−x
2/4 dx

≈ 2
4
[f(0.25) + f(0.75)

+ f(1.25) + f(1.75)]
≈ 1.497494

b) Trapezoidal Rule:Z 2

0

e−x
2/4 dx

≈ 2
8
[f(0) + 2f(.5) + 2f(1)

+ 2f(1.5) + f(2)]
≈ 1.485968

c) Simpson’s Rule:Z 2

0

e−x
2/4 dx

≈ 2

12
[f(0) + 4f(.5) + 2f(1)

+ 4f(1.5) + f(2)]
≈ 1.493711

63.
n Midpoint Trapezoid Simpson’s

20 2.08041 2.08055 2.08046
40 2.08045 2.08048 2.08046

64.

n Midpoint Trapezoid Simpson’s

20 1.493802 1.493342 1.493648
40 1.493687 1.493572 1.493648


