
Chapter 1

Limits and
Continuity

1.1 A Brief Preview of

Calculus

1. The slope appears to be 2.

Second point msec
(2, 5) 3

(1.1, 2.21) 2.1
(1.01, 2.0201) 2.01

(0, 1) 1
(0.9, 1.81) 1.9
(0.99, 1.9801) 1.99

2. The slope appears to be 4.

Second point msec
(3, 10) 5

(2.1, 5.41) 4.1
(2.01, 5.0401) 4.01

(1, 2) 3
(1.9, 4.61) 3.9
(1.99, 4.9601) 3.99

3. The slope appears to be 0.

Second point msec
(1, 0.5403) −0.4597
(0.1, 0.995) −0.05
(0.01, 0.99995) −0.005
(-1, 0.5403) 0.4597
(-0.1, 0.995) 0.05
(-0.01, 0.99995) 0.005

4. The slope appears to be 1.

Second point msec
(1, 0.5403) 0.9466
(1.5, 0.0707) 0.9986
(1.57, 0.0008) 1
(2.5, -0.8011) 0.8621
(2, -0.4161) 0.9695
(1.6, -0.0292) 1

5. The slope appears to be 3.

Second point msec
(2, 10) 7

(1.1, 3.331) 3.31
(1.01, 3.030301) 3.0301

(0, 2) 1
(0.9, 2.729) 2.71

(0.99, 2.970299) 2.9701

6. The slope appears to be 12.

Second point msec
(3, 27) 19

(2.1, 11.261) 12.61
(2.01, 10.120601) 12.0601

(1, 3) 7
(1.9, 8.859) 11.41

(1.99, 9.880599) 11.9401

7. The slope appears to be 1
2
.

Second point msec
(1,
√
2) 0.4142

(0.1, 1.0488) 0.488
(0.01, 1.004988) 0.4988

(-1, 0) 1
(-0.1, 0.9487) 0.513
(-0.01, 0.99499) 0.501

8. The slope appears to be 0.25.

Second point msec
(2, 1.7321) 0.2679
(2.9, 1.9748) 0.252
(2.99, 1.9975) 0.25
(4, 2.2361) 0.2361
(3.1, 2.0248) 0.248
(3.01, 2.0025) 0.25
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9. The slope appears to be 1.

Second point msec
(1, e) 1.718282

(0.1, 1.1052) 1.051709
(0.01, 1.0101) 1.005017
(-1, 0.3679) 0.632121
(-0.1, 0.9048) 0.951626
(-0.01, 0.9901) 0.995017

10. The slope appears to be 2.72.

Second point msec
(0, 1) 1.7183

(0.9, 2.4596) 2.587
(0.99, 2.6912) 2.71
(2, 7.3891) 4.6708
(1.1, 3.0042) 2.859
(1.01, 2.7456) 2.73

11. The slope appears to be 1.

Second point msec
(0.1, -2.3026) 2.5584
(0.9, -0.1054) 1.054

(0.99, -0.01005034) 1.005034
(2, 0.6931) 0.6931
(1.1, 0.09531) 0.9531
(1.01, 0.00995) 0.995

Note that we used 0.1 rather than 0
as an evaluation point because lnx is
not defined at 0.

12. The slope appears to be 0.5.

Second point msec
(1, 0) 0.6931

(1.9, 0.6419) 0.512
(1.99, 0.6881) 0.5
(3, 1.0986) 0.4055
(2.1, 0.7419) 0.488
(2.01, 0.6981) 0.5

13. (a)

Left Right Length
(0, 1) (0.5, 1.25) 0.559

(0.5, 1.25) (1, 2) 0.901
(1, 2) (1.5, 3.25) 1.346

(1.5, 3.25) (2, 5) 1.820

Total 4.6267

(b)

Left Right Length
(0, 1) (0.25, 1.063) 0.258

(0.25, 1.063) (0.5, 1.25) 0.313
(0.5, 1.25) (0.75, 1.563) 0.400
(0.75, 1.563) (1, 2) 0.504
(1, 2) (1.25, 2.563) 0.616

(1.25, 2.563) (1.5, 3.25) 0.732
(1.5, 3.25) (1.75, 4.063) 0.850
(1.75, 4.063) (2, 5) 0.970

Total 4.6417

(c) Actual length approximately
4.6468.

14. (a)

Left Right Length
(0, 2) (0.25, 2.016) 0.250

(0.25, 2.016) (0.5, 2.125) 0.273
(0.5, 2.125) (0.75, 2.422) 0.388
(0.75, 2.422) (1, 3) 0.6299

Total 1.541

(b)

Left Right Length
(0, 2) (0.125, 2.00) 0.125

(0.125, 2.00) (0.25, 2.016) 0.126
(0.25, 2.016) (0.38, 2.05) 0.130
(0.38, 2.05) (0.5, 2.13) 0.144
(0.5, 2.13) (0.63, 2.244) 0.173
(0.63, 2.244) (0.75, 2.422) 0.217
(0.75, 2.422) (0.875, 2.67) 0.278
(0.875, 2.67) (1, 3) 0.353

Total 1.546

(c) Actual length approximately
2.0682.

15. (a) For the x-values of our points here
we use (approximations of) 0, π

8
, π
4
,
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3π
8
, and π

2
.

Left Right Length
(0, 1) (0.393, 0.92) 0.400

(0.393, 0.92) (0.785, 0.71) 0.449
(0.785, 0.71) (1.18, 0.383) 0.509
(1.18, 0.383) (1.571, 0) 0.548

Total 1.906

(b) For the x-values of our points here
we use (approximations of) 0, π

16
, π
8
,

3π
16
, π
4
, 5π
16
, 3π
8
, 7π
16
, and π

2
.

Left Right Length
(0, 1) (0.196, 0.98) 0.197

(0.196, 0.98) (0.393, 0.92) 0.204
(0.393, 0.92) (0.589, 0.83) 0.217
(0.589, 0.83) (0.785, 0.71) 0.232
(0.785, 0.71) (0.982, 0.56) 0.248
(0.982, 0.56) (1.178, 0.38) 0.262
(1.178, 0.38) (1.37, 0.195) 0.272
(1.37, 0.195) (1.571, 0) 0.277

Total 1.909

(c) Actual length approximately
1.9101.

16. (a) For the x-values of our points here
we use (approximations of) 0, π

8
, π
4
,

3π
8
, and π

2
.

Left Right Length
(0, 0) (0.393, 0.38) 0.548

(0.393, 0.38) (0.785, 0.71) 0.509
(0.785, 0.71) (1.18, 0.924) 0.449
(1.18, 0.924) (1.57, 1) 0.400

Total 1.906

(b) For the x-values of our points here
we use (approximations of) 0, π

16
, π
8
,

3π
16
, π
4
, 5π
16
, 3π
8
, 7π
16
, and π

2
.

Left Right Length
(0, 0) (0.196, 0.2) 0.277

(0.196, 0.2) (0.39, 0.38) 0.272
(0.39, 0.38) (0.589, 0.56) 0.262
(0.589, 0.56) (0.785, 0.71) 0.248
(0.785, 0.71) (0.982, 0.83) 0.232
(0.982, 0.83) (1.18, 0.924) 0.217
(1.18, 0.924) (1.374, 0.98) 0.204
(1.374, 0.98) (1.571, 1) 0.197

Total 1.909

(c) Actual length approximately
1.9101.

17. (a)

Left Right Length
(0, 1) (0.75, 1.323) 0.817

(0.75, 1.323) (1.5, 1.581) 0.793
(1.5, 1.581) (2.25, 1.803) 0.782
(2.25, 1.803) (3, 2) 0.776

Total 3.167

(b)

Left Right Length
(0, 1) (0.375, 1.17) 0.413

(0.375, 1.17) (0.75, 1.323) 0.404
(0.75, 1.323) (1.125, 1.46) 0.399
(1.125, 1.46) (1.5, 1.58) 0.395
(1.5, 1.58) (1.88, 1.696) 0.392
(1.88, 1.696) (2.25, 1.80) 0.390
(2.25, 1.80) (2.63, 1.904) 0.388
(2.63, 1.904) (3, 2) 0.387

Total 3.168

(c) Actual length approximately
3.168.

18. (a)

Left Right Length
(1, 1) (1.25, 0.8) 0.3202

(1.25, 0.8) (1.5, 0.67) 0.2833
(1.5, 0.67) (1.75, 0.571) 0.2675
(1.75, 0.571) (2, 0.5) 0.2600

Total 1.1310

(b)
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Left Right Length
(1, 1) (1.125, 0.89) 0.167

(1.125, 0.89) (1.25, 0.8) 0.153
(1.25, 0.8) (1.375, 0.73) 0.145
(1.375, 0.73) (1.5, 0.67) 0.139
(1.5, 0.67) (1.625, 0.62) 0.135
(1.625, 0.62) (1.75, 0.57) 0.133
(1.75, 0.57) (1.875, 0.53) 0.131
(1.875, 0.53) (2, 0.5) 0.129

Total 1.132

(c) Actual length approximately
1.1321.

19. (a)

Left Right Length
(-2, 5) (-1, 2) 3.162
(-1, 2) (0, 1) 1.414
(0, 1) (1, 2) 1.414
(1, 2) (2, 5) 3.162

Total 9.153

(b)

Left Right Length
(-2, 5) (-1.5, 3.25) 1.820

(-1.5, 3.25) (-1, 2) 1.346
(-1, 2) (-0.5, 1.25) 0.901

(-0.5, 1.25) (0, 1) 0.559
(0, 1) (0.5, 1.25) 0.559

(0.5, 1.25) (1, 2) 0.901
(1, 2) (1.5, 3.25) 1.346

(1.5, 3.25) (2, 5) 1.820

Total 9.253

(c) Actual length approximately
9.2936.

20. (a)

Left Right Length
(-1, 1) (-0.5, 1.875) 1.0078

(-0.5, 1.875) (0, 2) 0.5154
(0, 2) (0.5, 2.125) 0.5154

(0.5, 2.125) (1, 3) 1.0078

Total 3.0463

(b)

Left Right Length
(-1, 1) (-0.75, 1.58) 0.630

(-0.75, 1.58) (-.5, 1.88) 0.388
(-.5, 1.88) (-0.25, 1.98) 0.273
(-0.25, 1.98) (0, 2) 0.251
(0, 2) (0.25, 2.016) 0.251

(0.25, 2.016) (0.5, 2.13) 0.273
(0.5, 2.13) (0.75, 2.42) 0.388
(0.75, 2.42) (1, 3) 0.630

Total 3.084

(c) Actual length approximately
3.0957.

21. The sum of the areas of the rectangles
is 11/8 = 1.375.

0

0.8

0

x

0.5-0.5 1-1

0.4

1

0.2

0.6

22. The sum of the areas of the rectangles
is 43/32 = 1.34375.

0.8

x

1-1 0.5
0

0.4

0.6

1

-0.5

0.2

0

23. (a) The width of the entire region
(−1 ≤ x ≤ 1) is 2, so the
width of each rectangle is 2/16 =
0.125. The left endpoints of the
rectangles are

−1, −1+ 2
16
, . . . , −1+ 28

16
, −1+ 30

16
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so the midpoints of the rectan-
gles are

−1 + 1
16
, −1 + 3

16
, . . . , −1 + 31

16
.

The heights of the rectangles
are then given by the function
f(x) = 1−x2 evaluated at those
midpoints. We multiply each
height by the width (0.125) and
add them all to obtain the ap-
proximation 1.3359375 for the
area.

(b) Using the same method as in
(a), the width of the rectangles
is now 2/32 = 0.0625, and the
midpoints are

−1 + 1
32
, −1 + 3

32
, . . . , −1 + 63

32
.

The approximation is 1.333984375.

(c) Using the same method as in
(a), the width of the rectangles
is now 2/64 = 0.03125, and the
midpoints are

−1 + 1
64
, −1 + 3

64
, . . . , −1 + 127

64
.

The approximation is 1.333496094.

The actual area is 4/3.

24. The following is a graph with 4 rect-
angles:

0

x

32.52

0.8

1.510 0.5

0.4

0.2

1

0.6

(a) Using the same method as in ex-
ercise 23, the width of the rect-
angles is π/16, and the mid-
points are
π
16
, 3π
16
, . . . , 15π

16
.

The approximation is 2.003216378.

(b) Using the same method as in ex-
ercise 23, the width of the rect-
angles is now π/32, and the mid-
points are
π
32
, 3π
32
, . . . , 31π

32
.

The approximation is 2.000803417.

(c) Using the same method as in ex-
ercise 23, the width of the rect-
angles is now π/64, and the mid-
points are
π
64
, 3π
64
, . . . , 63π

64
.

The approximation is 2.000200812.

The actual area is 2.

25. The following is a graph with 4 rect-
angles:

0

0.8

x

10.80.60.40.20

0.4

1

0.2

0.6

(a) Using the same method as in
exercise 23, the width of the
rectangles is 1/16, and the mid-
points are
1
16
, 3
16
, . . . , 15

16
.

The approximation is 0.249511719.

(b) Using the same method as in ex-
ercise 23, the width of the rect-
angles is now 1/32, and the mid-
points are
1
32
, 3
32
, . . . , 31

32
.

The approximation is 0.24987793.

(c) Using the same method as in ex-
ercise 23, the width of the rect-
angles is now 1/64, and the mid-
points are
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1
64
, 3
64
, . . . , 63

64
.

The approximation is 0.249969482.

The actual area is 1/4.

26. The following is a graph with 4 rect-
angles:

x

1.510.5

6

20

2

8

0

4

(a) Using the same method as in
exercise 23, the width of the
rectangles is 2/16, and the mid-
points are
1
16
, 3
16
, . . . , 31

16
.

The approximation is 3.992187500.

(b) Using the same method as in ex-
ercise 23, the width of the rect-
angles is now 2/32, and the mid-
points are
1
32
, 3
32
, . . . , 63

32
.

The approximation is 3.998046875.

(c) Using the same method as in ex-
ercise 23, the width of the rect-
angles is now 2/64, and the mid-
points are
1
64
, 3
64
, . . . , 127

64
.

The approximation is 3.999511719.

The actual area is 4.

1.2 The Concept of

Limit

1. (a) lim
x→0−

f(x) = −2

(b) lim
x→0+

f(x) = 2

(c) Does not exist.

(d) lim
x→1−

f(x) = 1

(e) lim
x→−1

f(x) ≈ 0.1

(f) lim
x→2−

f(x) = −1

(g) lim
x→2+

f(x) = 3

(h) Does not exist.

(i) lim
x→−2

f(x) ≈ 1.8

(j) lim
x→3

f(x) ≈ 2.5

2. (a) lim
x→0−

f(x) = 3

(b) lim
x→0+

f(x) = 1

(c) Does not exist.

(d) lim
x→2−

f(x) ≈ 1.5

(e) lim
x→−2

f(x) = 3

(f) lim
x→1−

f(x) = 2

(g) lim
x→1+

f(x) = 2

(h) lim
x→1

f(x) = 2

(i) lim
x→−1

f(x) ≈ 3.8

(j) lim
x→3

f(x) = 1

3. (a) lim
x→2−

f(x) = lim
x→2−

2x = 4

(b) lim
x→2+

f(x) = lim
x→2+

x2 = 4

(c) lim
x→2

f(x) = 4

(d) lim
x→1

f(x) = lim
x→1

2x = 2
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y

16

12

8

4

0

x

43210-1

4. (a) lim
x→0−

f(x) = lim
x→0−

x3 − 1 = −1

(b) lim
x→0+

f(x) = lim
x→0+

√
x+ 1− 2

= −1

(c) lim
x→0

f(x) = −1

(d) lim
x→−1

f(x) = lim
x→−1

x3 − 1 = −2

(e) lim
x→3

f(x) = lim
x→3
√
x+ 1− 2 = 0

y

x

0.5

1
0

-0.5

0.5

-1

-1.5

0-0.5-1

5. (a) lim
x→−1−

f(x) = lim
x→1−

x2 + 1 = 2

(b) lim
x→−1+

f(x) = lim
x→1+

3x+ 1 = −2

(c) lim
x→−1

f(x) does not exist

(d) lim
x→1

f(x) = lim
x→1

3x+ 1 = 4

y

10

5

0

-5

-10

x

3210-1-2-3

6. (a) lim
x→−1−

f(x) = lim
x→−1−

2x+1 = −1

(b) lim
x→−1+

f(x) = lim
x→−1+

3 = 3

(c) lim
x→−1

f(x) does not exist.

(d) lim
x→1

f(x) = 3

(e) lim
x→0

f(x) = lim
x→0

3 = 3

-1

x

0
10

2

4

2-2

-2

7. f(1.5) = 2.22, f(1.1) = 2.05,
f(1.01) = 2.01, f(1.001) = 2.00.

The values of f(x) seem to be ap-
proaching 2 as x approaches 1 from
the right.

f(0.5) = 1.71, f(0.9) = 1.95,
f(0.99) = 1.99, f(0.999) = 2.00.

The values of f(x) seem to be ap-
proaching 2 as x approaches 1 from
the left. Since the limits from the left
and right exist and are the same, the
limit exists.
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8. f(−1.5) = −0.4
f(−1.1) = −0.4762
f(−1.01) = −0.4975
f(−1.001) = −0.4998
The values of f(x) seem to be ap-
proaching −0.5 as x approaches −1
from the left.

f(−0.5) = −0.6667
f(−0.9) = −0.5263
f(−0.99) = −0.5025
f(−0.999) = −0.5003
The values of f(x) seem to be ap-
proaching −0.5 as x approaches −1
from the right. Since the limits from
the left and right exist and are the
same, the limit exists.

9. By inspecting the graph, and using a
sequence of values (as in exercises 7
and 8), we see that the limit is ap-
proximately 2.

10. By inspecting the graph, and using a
sequence of values (as in exercises 7
and 8), we see that the limit is ap-
proximately 1

3
.

11. By inspecting the graph, and using a
sequence of values (as in exercises 7
and 8), we see that the limit is ap-
proximately 1.

12. By inspecting the graph, and using a
sequence of values (as in exercises 7
and 8), we see that the limit is ap-
proximately −1.

13. By inspecting the graph, and using a
sequence of values (as in exercises 7
and 8), we see that the limit is ap-
proximately 1.

14. By inspecting the graph, and using a
sequence of values (as in exercises 7
and 8), we see that the limit is ap-
proximately 0.

15. The numerical evidence suggests that
the function the function blows up at
x = 1. From the graph we see that
the function has a vertical asymptote
at x = 1.

16. The limit exists and equals −2.

17. By inspecting the graph, and using a
sequence of values (as in exercises 7
and 8), we see that the limit is ap-
proximately 3/2.

18. The limit exists and equals 4.

19. The limit does not exist because the
graph oscillates wildly near x = 0.

20. The limit exists and equals 0.

21. The numerical evidence suggests that

lim
x→2−

x−2
|x−2| = −1 while limx→2+

x−2
|x−2| = 1

so lim
x→2

x−2
|x−2| does not exist. There is a

break in the graph at x = 2.

22. The function approaches 1/2 from the
left, and −1/2 from the right. Since
these are not equal, the limit does not
exist.

23. The function lnx is not defined for
x ≤ 0 so the limit does not exist. The
numerical evidence suggests that the
function blows up as x approaches 0
from the right. From the graph we
see that the function has a one-sided
vertical asymptote at x = 0.

24. The limit exists and equals 0.

25. The limit exists and equals 1.

26. The limit exists and equals 1.
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27. Numerical and graphical evidence
show that the limits

lim
x→1

x2 + 1

x− 1 and limx→2
x+ 1

x2 − 4

do not exist (both have vertical
asymptotes). Our conjecture is that

if g(a) = 0 and f(a) 6= 0, lim
x→a

f(x)
g(x)

does not exist.

28.

lim
x→−1

x+ 1

x2 + 1
= 0 and lim

x→π

sinx

x
= 0.

If the numerator f(a) = 0, and the
denominator g(a) 6= 0, then the limit
lim
x→a

f(x)
g(x)

= 0.

29. One possibility:

y

4

2

0

-2

-4

x

3210-1-2-3

30. One possibility:

y

3

x

2.5

2

3

1.5

1

2

0.5

0
10-1-2-3

31. One possibility:

y

5

4

3

2

1

0

-1

x

210-1-2

32. One possibility:

0-2-4

y

3

2

1

0

-1

-2

x

-3

42

33. By inspecting the graph, and using a
sequence of values (as in exercises 7
and 8), we see that the limit is ap-
proximately 1/2.

2

1

1.5

0.5

0.5

0

x

2.521.50 1 3

34. By inspecting the graph, and using a
sequence of values (as in exercises 7
and 8), we see that the limit is ap-
proximately 1/2.

35. The first argument gives the correct
value; the second argument is not
valid because it looks only at certain
values of x.
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36. As x approaches 0 from the right, 1/x
increases without bound, hence −1/x
decreases without bound, and e−1/x

approaches 0 when x approaches 0
from the right. On the other hand,
as x approaches 0 from the left, 1/x
decreases without bound, hence −1/x
increases without bound, and e−1/x

increases without bound as well. This
argument shows that the limit in
question does not exist.

37.
x (1 + x)

1
x x (1 + x)

1
x

0.1 2.59 −0.1 2.87
0.01 2.70 −0.01 2.73
0.001 2.7169 −0.001 2.7196

lim
x→0
(1 + x)1/x ≈ 2.7182818

38. We see that 1/x is increasing without
bound when x is approaches 0. While
it is true that 1 raised to any power is
1, numbers close to 1 raised to large
enough powers may be very far from
1.

39.
x xsecx

0.1 0.099
0.01 0.010
0.001 0.001

lim
x→0+

xsecx = 0

For negative x the values of xsecx

are usually not real numbers, so
lim
x→0−

xsecx = 0 does not exist.

40. While it is true that 0 raised to any
power is 0, numbers close to 0 raised
to small enough powers may be very
far from 0. This computation is ac-
cidentally correct because secx is ap-
proaching 1 when x is approaches 0.

41. Possible answers:

f(x) =
x2

x

g(x) =

(
1 if x ≤ 0
−1 if x > 0

42. There are many possibilities. Here is
a simple one

f(x) =

⎧⎨⎩ −x x < 0
3 x = 0
x x > 0

43. As x gets arbitrarily close to a, f(x)
gets arbitrarily close to L.

44. The limit of h(ω) as ω → 0+ seems to
be 0.

6

0.4

4

x

0.5

2

0.2

100

0.1

8
0

0.3

For ω = 0, the ball position the bat-
ter sees at t = 0.4 is the same as what
he tries to hit.

45. For 3 ≤ t ≤ 4, f(t) = 8, so
lim
t→3.5

f(t) = 8. Also lim
t→4−

f(t) = 8.

On the other hand, for 4 ≤ t ≤ 5,
f(t) = 10, so lim

t→4+
f(t) = 10. Hence

lim
t→4

f(t) does not exist.
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x

20151050

y

14

12

10

8

6

4

2

0

46. The limit does not exist at t = 1, 2, 3,
4, and 5 hours. In each case the limit
from the left is two dollars less than
the limit from the right. We would be
in a hurry to move our car just before
the hour to try to save $2. Just after
the hour, we can relax and take our
time as the next price increase doesn’t
come until the next hour.

1.3 Computation of

Limits

1. lim
x→0
(x2 − 3x+ 1) = 02 − 3(0) + 1 = 1

2. lim
x→2

3
√
2x+ 1 = 3

p
2(2) + 1 =

3
√
5.

3. lim
x→0

cos−1(x2) = cos−1 0 =
π

2
.

4. lim
x→2

x− 5
x2 + 4

=
2− 5
22 + 4

= −3
8

5. lim
x→3

x2 − x− 6
x− 3

= lim
x→3

(x− 3)(x+ 2)
x− 3

= lim
x→3
(x+ 2) = 3 + 2 = 5

6. lim
x→1

x2 + x− 2
x2 − 3x+ 2

= lim
x→1

(x− 1)(x+ 2)
(x− 1)(x− 2)

= lim
x→1

(x+ 2)

(x− 2) =
3

−1 = −3.

7. lim
x→2

x2 − x− 2
x2 − 4

= lim
x→2

(x− 2)(x+ 1)
(x+ 2)(x− 2)

= lim
x→2

x+ 1

x+ 2
=
2 + 1

2 + 2
=
3

4

8. lim
x→1

x3 − 1
x2 + 2x− 3

= lim
x→1

(x− 1)(x2 + x+ 1)

(x+ 3)(x− 1)
= lim

x→1
x2 + x+ 1

x+ 3
=
12 + 1 + 1

1 + 3
=
3

4

9. lim
x→0

sinx

tanx
= lim

x→0
sinx
sinx
cosx

= lim
x→0

cosx = cos 0 = 1

10. lim
x→0

tanx

x

= lim
x→0

sinx

x cosx

=

µ
lim
x→0

sinx

x

¶µ
lim
x→0

1

cosx

¶
= 1.

11. lim
x→0

xe−2x+1

x2 + x

= lim
x→0

x(e−2x+1)
x(x+ 1)

= lim
x→0

e−2x+1

x+ 1
=

e−2(0)+1

0 + 1
= e

12. lim
x→0+

x2 csc2 x

= lim
x→0+

x2

sin2 x

=

µ
lim
x→0+

1
sinx
x

¶µ
lim
x→0+

1
sinx
x

¶
= 1.

13. lim
x→0

√
x+ 4− 2

x

= lim
x→0

√
x+ 4− 2

x

µ√
x+ 4 + 2√
x+ 4 + 2

¶
= lim

x→0
x+ 4− 4

x(
√
x+ 4 + 2)

= lim
x→0

x

x(
√
x+ 4 + 2)
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= lim
x→0

1√
x+ 4 + 2

=
1√
4 + 2

=
1

2 + 2
=
1

4

14. lim
x→0

2x

3−√x+ 9
= lim

x→0
2x

(3−√x+ 9)
(3 +

√
x+ 9)

(3 +
√
x+ 9)

= lim
x→0

2x(3 +
√
x+ 9)

−x
= lim

x→0
−2(3 +√x+ 9) = −12

15. lim
x→1

x− 1√
x− 1

= lim
x→1

(
√
x+ 1)(

√
x− 1)√

x− 1
= lim

x→1
(
√
x+ 1) =

√
1 + 1 = 2

16. lim
x→4

√
x− 2
x− 4

= lim
x→4

(
√
x− 2)

(x− 4)
(
√
x+ 2)

(
√
x+ 2)

= lim
x→4

x− 4
(x− 4)(√x+ 2)

= lim
x→4

1

(
√
x+ 2)

=
1

4
.

17. lim
x→1

µ
1

x− 1 −
2

x2 − 1
¶

= lim
x→1

µ
1

x− 1 −
2

(x− 1)(x+ 1)
¶

= lim
x→1

µ
x+ 1

(x− 1)(x+ 1) −
2

(x− 1)(x+ 1)
¶

= lim
x→1

µ
x− 1

(x− 1)(x+ 1)
¶

= lim
x→1

µ
1

x+ 1

¶
=
1

2

18. Undefined. The limit from the right
is 0, but the limit from the left does
not exist.

19. lim
x→0

1− e2x

1− ex

= lim
x→0

(1− ex) (1 + ex)

1− ex

= lim
x→0

(1 + ex) = 2

20. lim
x→0

sin(e−1/x
2

) = lim
x→0

sin(0) = 0

21. lim
x→0+

sin(|x|)
x

= lim
x→0+

sin(x)

x
= 1

lim
x→0−

sin(|x|)
x

= lim
x→0−

sin(−x)
x

= lim
x→0−

− sin(x)
x

= −1
Since the limit from the left does not
equal the limit from the right, we see
that lim

x→0
sin(|x|)

x
does not exist.

22. lim
x→0

sin2(x2)

x4

= lim
x→0

µ
sin(x2)

x2

¶µ
sin(x2)

x2

¶
=

µ
lim
x→0

sin(x2)

x2

¶µ
lim
x→0

sin(x2)

x2

¶
= (1)(1) = 1

23. lim
x→2−

f(x) = lim
x→2−

2x = 2(2) = 4

lim
x→2+

f(x) = lim
x→2+

x2 = 22 = 4

lim
x→2

f(x) = 4

24. Undefined. The limit from the left is
2, but the limit from the right is -2.

25. lim
x→0

f(x) = lim
x→0
(3x+1) = 3(0)+1 = 1

26. lim
x→1

f(x) = lim
x→1

2x = 2.

27. lim
x→−1−

f(x) = lim
x→−1−

(2x+ 1)

= 2(−1) + 1 = −1
lim

x→−1+
f(x) = lim

x→−1+
3 = 3

Therefore lim
x→−1

f(x) does not exist.

28. lim
x→1−

f(x) = 3,

lim
x→1+

f(x) = lim
x→1+

2x+ 1 = 3,

Therefore lim
x→1

f(x) = 3.
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29. lim
h→0

(2 + h)2 − 4
h

= lim
h→0

(4 + 4h+ h2)− 4
h

= lim
h→0

4h+ h2

h
= lim

h→0
4 + h = 4

30. lim
h→0

(1 + h)3 − 1
h

= lim
h→0

1 + 3h+ 3h2 + h3 − 1
h

= lim
h→0

h(3 + 3h+ h2)

h
= lim

h→0
3 + 3h+ h2 = 3

31. lim
h→0

h2√
h2 + h+ 3−√h+ 3

= lim
h→0

h2(
√
h2 + h+ 3 +

√
h+ 3)

(h2 + h+ 3)− (h+ 3)
= lim

h→0
h2(
√
h2 + h+ 3 +

√
h+ 3)

h2

= lim
h→0

√
h2 + h+ 3 +

√
h+ 3 = 2

√
3

To get from the first line to the sec-
ond, we have multiplied by

√
h2 + h+ 3 +

√
h+ 3√

h2 + h+ 3 +
√
h+ 3

.

32. lim
x→0

√
x2 + x+ 4− 2

x2 + x
=

lim
x→0

(
√
x2 + x+ 4− 2)

x2 + x

(
√
x2 + x+ 4 + 2)

(
√
x2 + x+ 4 + 2)

= lim
x→0

x2 + x

(x2 + x)(
√
x2 + x+ 4 + 2)

= lim
x→0

1√
x2 + x+ 4 + 2

=
1

4

33. lim
t→−2

1
2
+ 1

t

2 + t

= lim
t→−2

t+2
2t

2 + t

= lim
t→−2

1

2t
= −1

4

34. lim
x→0

tan 2x

5x

= lim
x→0

sin 2x

5x cos 2x

= lim
x→0

sin 2x

2x

2

5 cos 2x
=
2

5
.

35.
x2 x2 sin (1/x)

−0.1 0.0054
−0.01 5× 10−5
−0.001 −8× 10−7
0.1 −0.005
0.01 −5× 10−5
0.001 8× 10−7

Conjecture: lim
x→0

x2 sin (1/x) = 0.

Let f(x) = −x2, h(x) = x2. Then

f(x) ≤ x2 sin

µ
1

x

¶
≤ h(x)

lim
x→0
(−x2) = 0, lim

x→0
(x2) = 0

Therefore, by the Squeeze Theorem,

lim
x→0

x2 sin

µ
1

x

¶
= 0.

0.01

0

0.005

0.10.05

-0.005

0

-0.01

-0.1 -0.05

x

36. You cannot use the Squeeze Theorem
as in exercise 35 because the secant
function is not bounded between -1
and 1 like the sine function is. This is
difficult to investigate graphically be-
cause of the infinitely many vertical
asymptotes as x approaches 0.

37. Let f(x) = 0, h(x) =
√
x. We see

that

f(x) ≤ √x cos2(1/x) ≤ h(x),
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lim
x→0+

0 = 0, lim
x→0+

√
x = 0

Therefore, by the Squeeze Theorem,

lim
x→0+

√
x cos2

µ
1

x

¶
= 0.

0.01

0

0.005

0.10.05

-0.005

0

-0.01

-0.1 -0.05

x

38. Saying that |f(x)| ≤ M for all x is
the same as saying −M ≤ f(x) ≤ M
for all x. This implies that

−Mx2 ≤ x2f(x) ≤Mx2.

Since ±Mx2 → 0 as x → 0,
the Squeeze Theorem shows that
lim
x→0

x2f(x) = 0.

39. lim
x→4+

√
16− x2 does not exist because

the domain of the function is [−4, 4].
40. lim

x→4−
√
16− x2 = 0.

41. lim
x→−2−

√
x2 + 3x+ 2 = 0.

42. lim
x→−2+

√
x2 + 3x+ 2 does not exist be-

cause the domain of the function is
(−∞,−2) ∪ (−1,∞).

43. lim
x→0+

√
1− cosx

x
=

r
1

2
=

√
2

2

44. lim
x→0

1− cos2 x
x2

= lim
x→0

sin2 x

x2

=

µ
lim
x→0

sinx

x

¶µ
lim
x→0

sinx

x

¶
= 1.

45. lim
x→a−

f(x) = lim
x→a−

g(x) = g(a) be-

cause g(x) is a polynomial. Similarly,

lim
x→a+

f(x) = lim
x→a+

h(x) = h(a).

46. Evaluate g(a) and h(a). If they are
equal, the limit exists and is this
value. If they are not equal, the limit
does not exist.

47. (a) lim
x→2
(x2 − 3x+ 1)

= 22 − 3(2) + 1 (Theorem 3.2)
= −1

(b) lim
x→0

x− 2
x2 + 1

=
lim
x→0
(x− 2)

lim
x→0
(x2 + 1)

(Theorem 3.1(iv))

=
lim
x→0

x− lim
x→0

2

lim
x→0

x2 + lim
x→0

1

(Theorem 3.1(ii))

=
0− 2
0 + 1

(Equations 3.1, 3.2, and 3.5)
= −2

48. (a) lim
x→−1

(x+ 1) sinx

= lim
x→−1

(x+ 1) lim
x→−1

sinx

(Theorem 3.1).
Using Theorems 3.2 and 3.4 we
get that this is equal to (−1 +
1) sin(−1) = 0.

(b) By Theorem 3.1,

lim
x→1

xex

tanx
=
(lim
x→1

x)(lim
x→1

ex)

lim
x→1

tanx
.

Using Theorem 3.2 and Theorem

3.4 we see that this equals
e

tan 1
.

49. Velocity is given by the limit

lim
h→0

f(2 + h)− f(2)

h
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= lim
h→0

(2 + h)2 + 2− (22 + 2)
h

= lim
h→0

4h+ h2

h
= lim

h→0
4 + h = 4.

50. Velocity is given by the limit

lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

h2 + 2− 2
h

= lim
h→0

h = 0.

51. Velocity is given by the limit

lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

(0 + h)3 − (0)3
h

= lim
h→0

h3

h
= lim

h→0
h2 = 0.

52. Velocity is given by the limit

lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + h)3 − 1
h

= 3

(see exercise 30).

53. m = lim
h→0

√
1 + h− 1

h

√
1 + h+ 1√
1 + h+ 1

= lim
h→0

1 + h− 1
h(
√
1 + h+ 1)

= lim
h→0

h

h(
√
1 + h+ 1)

= lim
h→0

1√
1 + h+ 1

=
1√

1 + 0 + 1
=
1

2
.

2

1

1.5

0.5

0.5

0

x

2.521.50 1 3

54. lim
x→1

√
x− 1
x− 1

= lim
x→1

(
√
x− 1)

(x− 1)
(
√
x+ 1)

(
√
x+ 1)

= lim
x→1

x− 1
(x− 1)(√x+ 1)

= lim
x→1

1√
x+ 1

=
1

2
.

55. lim
x→0+

(1 + x)1/x = e ≈ 2.71828

56. lim
x→0+

e1/x does not exist.

57. lim
x→0+

x−x
2

= 1

58. lim
x→0+

xlnx does not exist.

59. As x gets close to 0, 1/x gets
larger and larger in absolute value,
so sin(1/x) oscillates more and more
rapidly between 1 and−1, so the limit
does not exist.

60. lim
x→0

e1/x does not exist.

61. When x is small and positive, 1/x is
large and positive, so tan−1(1/x) ap-
proaches π/2. But when x is small
and negative, 1/x is large and nega-
tive, so tan−1(1/x) approaches −π/2.
So the limit does not exist.

62. lim
x→0

ln | 1
x
| does not exist.
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63. lim
x→a

[2f(x)− 3g(x)]
= 2 lim

x→a
f(x)− 3 lim

x→a
g(x)

= 2(2)− 3(−3) = 13

64. lim
x→a

[3f(x)g(x)]

= 3(lim
x→a

f(x))(lim
x→a

g(x))

= 3(2)(−3) = −18

65. lim
x→a

∙
f(x) + g(x)

h(x)

¸
does not exist, because

lim
x→a

[f(x) + g(x)]

= lim
x→a

f(x) + lim
x→a

g(x)

= 2− 3 = −1
and limx→a h(x) = 0.

66. lim
x→a

∙
3f(x) + 2g(x)

h(x)

¸
cannot be de-

termined from the given information
since

lim
x→a

[3f(x) + 2g(x)]

= 3 lim
x→a

f(x) + 2 lim
x→a

g(x)

= 3(2) + 2(−3) = 0
and limx→a h(x) = 0.

67. lim
x→a
[f(x)]3

=
h
lim
x→a

f(x)
i h
lim
x→a

f(x)
i h
lim
x→a

f(x)
i

= L · L · L = L3

lim
x→a
[f(x)]4 =

h
lim
x→a

f(x)
i h
lim
x→a

[f(x)]3
i

= L · L3 = L4

68. Since we have a starting place, and
we have shown that we can always get
from one step to the next, the theo-
rem must be true for any positive in-
teger.

Given that lim
x→a

f(x) = L.

Assume that lim
x→a
[f(x)]k = Lk. Now

lim
x→a
[f(x)]k+1 = lim

x→a
[f(x)]kf(x)

= lim
x→a
[f(x)]k lim

x→a
f(x) = LkL = Lk+1.

Therefore lim
x→a
[f(x)]n = Ln for any

positive integer n.

69. We can’t split the limit of a prod-
uct into a product of limits unless we
know that both limits exist; the limit
of the product of a term tending to-
ward 0 and a term with an unknown
limit is not necessarily 0 but instead
is unknown.

70. The limit of a quotient is not the quo-
tient of the limits if the denominator
is 0. The fraction 0

0
is indeterminate,

and can equal any finite value or be
undefined.

71. One possibility is

f(x) =
1

x
, g(x) = −1

x
.

72. f(x) = x, g(x) = 1
x
. lim

x→0
f(x)g(x) =

1, but lim
x→0

g(x) does not exist.

73. Yes. If lim
x→a
[f(x) + g(x)] exists, then,

it would also be true that

lim
x→a
[f(x) + g(x)]− lim

x→a
f(x)

exists. But by Theorem 3.1 (ii)

lim
x→a
[f(x) + g(x)]− lim

x→a
f(x)

= lim
x→a

[[f(x) + g(x)]− [f(x)]]
= lim

x→a
g(x)

so lim
x→a

g(x) would exist, but we are

given that lim
x→a

g(x) does not exist.

74. False. For example, let f(x) = 1/x.
lim
x→0

f(x) does not exist, but

lim
x→0

1

f(x)
= lim

x→0
x = 0.
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75. lim
x→0+

T (x) = lim
x→0+

(0.14x) = 0 = T (0).

lim
x→10,000−

T (x) = 0.14(10,000) = 1400

lim
x→10,000+

T (x)

= 1500 + 0.21(10,000) = 3600

Therefore lim
x→10,000

T (x) does not exist.

A small change in income should re-
sult in a small change in tax liabil-
ity. This is true near x = 0 but is not
true near x = 10,000. As your income
grows past $10,000 your tax liability
jumps enormously.

76. If lim
x→0+

T (x) = 0, then a = 0. If

lim
x→20,000

exists, then b must be 2400.

These limits should exist so that $0
income corresponds to $0 tax, and
so that the tax function doesn’t have
sudden jumps.

77. lim
x→3−

[x] = 2; lim
x→3+

[x] = 3

Therefore lim
x→3
[x] does not exist.

78. (a) lim
x→1
[x] does not exist. Ap-

proaches 0 from left, 1 from
right.

(b) lim
x→1.5

[x] = 1.

(c) lim
x→1.5

[2x] does not exist. Ap-

proaches 2 from left, 3 from
right.

(d) lim
x→1

x − [x] does not exist. Ap-
proaches 1 from left, 0 from
right.

1.4 Continuity and its

Consequences

1. Discontinuous at x = −2 (limit does
not exist), and at x = 2 (function un-
defined).

2. Discontinuous at x = −4 (function
undefined), at x = −2 (limit not
equal to function value), and at x = 3
(limit does not exist).

3. Discontinuous at x = −2 (function
undefined), at x = 1 (function unde-
fined), and at x = 4 (limit does not
exist).

4. Discontinuous at x = −2, x = 0, and
x = 4 (function undefined).

5. Discontinuous at x = −2 (limit does
not exist), at x = 2 (function unde-
fined), and at x = 4 (limit does not
exist).

6. Discontinuous at x = −2 (limit does
not exist), at x = 0 (limit not equal
to function value), and at x = 2 (limit
does not exist).

7. f(1) is not defined and lim
x→1

f(x) does

not exist.

8. Discontinuous because function is not
defined at x = 1.

9. f(0) is not defined and lim
x→0

f(x) does

not exist.

10. Discontinuous because function is not
defined at x = 0.

11. lim
x→2−

f(x) = lim
x→2−

(x2) = 4

lim
x→2+

f(x) = lim
x→2+

(3x− 2) = 4
lim
x→2

f(x) = 4; f(2) = 3

lim
x→2

f(x) 6= f(2)

12. Discontinuous because function is not
defined at x = 2.

13. f(x) =
x− 1

(x+ 1)(x− 1) has a remov-
able discontinuity at x = 1 and a
non-removable discontinuity at x =
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−1; the removable discontinuity is re-
moved by

g(x) =
1

x+ 1
.

14. f(x) is discontinuous where the de-
nominator is 0. The function is not
defined at x = −2 and x = 1. (Not
removable.)

15. No discontinuities.

16. f(x) is discontinuous where the de-
nominator is 0. The function is not
defined at x = 1 ±√5. (Not remov-
able.)

17. f(x) =
x2 sinx

cosx
has non-removable

discontinuities at x = π
2
+ kπ for any

integer k.

18. Discontinuous wherever sinx = 0.
That is x = kπ for any integer k. (Not
removable.)

19. By sketching the graph, or numeri-
cally, one can see that lim

x→0
x lnx2 = 0.

Thus, one can remove the discontinu-
ity at x = 0 by defining

g(x) =

½
x lnx2 if x 6= 0
0 if x = 0

20. Discontinuous wherever −4/x2 is un-
defined. That is, at x = 0. (Not re-
movable.)

21. f(x) has a non-removable discontinu-
ity at x = 1.

22. Continuous everywhere since

lim
x→0

sinx

x
= 1, and f(0) = 1.

23. f(x) has a non-removable discontinu-
ity at x = 1:
lim

x→−1−
f(x) = lim

x→−1−
(3x− 1) = −4

lim
x→−1+

f(x) = lim
x→−1+

(x2 + 5x) = −4
lim
x→1−

f(x) = lim
x→1−

(x2 + 5x) = 6

lim
x→1+

f(x) = lim
x→1+

(3x3) = 3

24. f(x) is undefined at x = 0, and there-
fore discontinuous there. If f(0) is de-
fined to be 0, the function is continu-
ous everywhere.

25. Continuous where x + 3 > 0, i.e. on
(−3,∞)

26. Continuous where x2 − 4 > 0, i.e. on
(∞,−2) and (2,∞).

27. Continuous everywhere, i.e. on
(−∞,∞).

28. Continuous where x − 1 > 0, i.e. on
(1,∞).

29. Continuous everywhere, i.e. on
(−∞,∞).

30. Continuous for all x 6= 0 (f(x) is un-
defined at x = 0).

31. Continuous where x + 1 > 0, i.e. on
(−1,∞).

32. Continuous where 4− x2 > 0, i.e. on
(−2, 2).

33.

lim
x→0−

f(x) = lim
x→0−

2
sinx

x

= 2 lim
x→0−

sinx

x
= 2

Hence a must equal 2 if f is continu-
ous.

lim
x→0−

f(x) = lim
x→0−

b cosx

= b lim
x→0−

cosx = b,

so b and a must equal 2 if f is contin-
uous.
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34. We need ae0+1 = sin−1 0, so a = −1.
We need 22 − 2 + b = sin−1 1, so
b = π

2
− 2.

35. First note that
lim
x→3+

f(x) = lim
x→3+

ln(x− 2) + x2

= ln(3− 2) + 32 = 9.

Also f(3) = 2e3b + 1, so if f is con-
tinuous, 2e3b+1 must equal 9; that is
e3b = 4, so b = ln 4

3
. Then note that

f(0) = 2e(b)(0) + 1 = 3.

Also,
lim
x→0−

f(x) = lim
x→0−

a(tan−1 x+ 2)

= a(tan−1 0 + 2)

= a(0 + 2) = 2a,

so a must equal 3/2 if f is continuous.

36. Corollary 4.1: Suppose that g is con-
tinuous at a and f is continuous at
g(a). Then, the composition f ◦ g is
continuous at a.

Proof: Note that f is continuous at
g(a), and lim

x→a
g(x) = g(a) Therefore,

Theorem 4.3 tells us that

lim
x→a

f(g(x)) = f(lim
x→a

g(x)).

This is equal to f(g(a)) since g is
continuous at a. Since f(g(a)) =
lim
x→a

f(g(x)), f ◦ g is continuous at
x = a.

37. lim
x→10000−

T (x) = lim
x→10000−

0.14x

= 0.14(10,000) = 1400

lim
x→10000+

T (x) = lim
x→10000+

(c+ 0.21x)

= c+ 0.21(10,000)

= c+ 2100

c+ 2100 = 1400
c = −700

A small change in income should not
result in a big change in tax, so the
tax function should be continuous.

38. If lim
x→0+

T (x) = 0, then a = 0. If

lim
x→20,000

exists, then b must be 2400.

39. For T (x) to be continuous at x =
141,250 we must have

lim
x→141,250−

T (x) = lim
x→141,250+

T (x).

Now
lim

x→141,250−
T (x) = lim

x→141,250−
(.30)(x)a

= (.30)(141,250)− 5685
= 36690.

On the other hand,
lim

x→141,250+
T (x) = lim

x→141,250+
(.35)(x)−b

= (.35)(141,250)− b

= 49437.50− b.

Hence
b = 49437.50− 36690 = 12,747.50.
For T (x) to be continuous at x =
307,050 we must have

lim
x→307,050−

T (x) = lim
x→307,050+

T (x).

Now
lim

x→307,050−
T (x)

= lim
x→307,050−

(.35)(x)− b

= (.35)(307,050)− 12,747.5
= 94,720.

On the other hand,
lim

x→307,050+
T (x)

= lim
x→307,050+

(.386)(x)− c

= (.386)(307,050)− c

= 118521.3− c.

Hence
c = 118,521.3− 94720 = 23801.3.
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40. lim
x→6,000−

T (x) = lim
x→6,000−

0.10x

= $600.

lim
x→6,000+

T (x) = lim
x→6,000+

0.15x− 300
= $600.

So T (6, 000) = $600 = lim
x→6,000

T (x),

and T (x) is continuous at x = 6, 000.

41. The first two rows of the following
table (together with the Intermedi-
ate Value Theorem) show that f(x)
has a root in [2, 3]. In the following
rows, we use the midpoint of the pre-
vious interval as our new x. When
f(x) is positive, we use the left half,
and when f(x) is negative, we use
the right half of the interval. (Be-
cause the function goes from nega-
tive to positive. If the function went
from positive to negative, the inter-
vals would be reversed.)

x f(x)
2 −3
3 2
2.5 −0.75
2.75 0.5625
2.625 −0.109375
2.6875 0.223
2.65625 0.557

The zero is in the interval
[2.625, 2.65625].

42. The first two rows of the following
table (together with the Intermedi-
ate Value Theorem) show that f(x)
has a root in [2, 3]. In the following
rows, we use the midpoint of the pre-
vious interval as our new x. When
f(x) is positive, we use the left half,
and when f(x) is negative, we use
the right half of the interval. (Be-
cause the function goes from nega-
tive to positive. If the function went

from positive to negative, the inter-
vals would be reversed.)

x f(x)
2 −2
3 13
2.5 3.625
2.25 0.3906
2.125 −0.9043
2.1875 −0.2825
2.21875 0.4758

The zero is in the interval
(2.1875, 2.21875).

43. The first two rows of the following ta-
ble (together with the Intermediate
Value Theorem) show that f(x) has
a root in [2, 3]. In the following rows,
we use the midpoint of the previous
interval as our new x. When f(x) is
positive, we use the right half, and
when f(x) is negative, we use the left
half of the interval.

x f(x)
−1 1
0 -2
−0.5 −0.125
−0.625 0.256
−0.5625 0.072
−0.53125 −0.025
The zero is in the interval
[−0.5625,−0.53125].

44. The first two rows of the following ta-
ble (together with the Intermediate
Value Theorem) show that f(x) has
a root in [−2,−1]. In the following
rows, we use the midpoint of the pre-
vious interval as our new x. When
f(x) is positive, we use the left half,
and when f(x) is negative, we use the
right half of the interval.
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x f(x)
−2 −2
−1 1
−1.5 0.625
−1.75 −0.3594
−1.625 0.2090
−1.6875 −0.0554
−1.65625 0.0816

The zero is in the interval
(−1.6875,−1.65625).

45. The first two rows of the following ta-
ble (together with the Intermediate
Value Theorem) show that f(x) has
a root in [−2,−1]. In the following
rows, we use the midpoint of the pre-
vious interval as our new x. When
f(x) is positive, we use the right half,
and when f(x) is negative, we use the
left half of the interval.

x f(x)
0 1
1 −0.46
0.5 0.378
0.75 −0.018
0.625 0.186
0.6875 0.085
0.71875 0.034

The zero is in the interval
[0.71875, 0.75].

46. The first two rows of the following ta-
ble (together with the Intermediate
Value Theorem) show that f(x) has
a root in [−2,−1]. In the following
rows, we use the midpoint of the pre-
vious interval as our new x. When
f(x) is positive, we use the left half,
and when f(x) is negative, we use the
right half of the interval.

x f(x)
−1 −0.6321
0 1
−0.5 0.1065
−0.75 −0.2776
−0.625 −0.0897
−0.5625 0.0073
−0.59375 −0.0415
The zero is in the interval
(−0.59375,−0.5625).

47. lim
x→2+

f(x) = lim
x→2+

(3x− 1) = 5
f(2) = 3(2)-1 = 5

Thus f(x) is continuous from the
right at x = 2.

48. Yes, f(x) is continuous from the right
at x = 2, because
lim
x→2+

f(x) = f(2) = 3.

49. lim
x→2+

f(x) = lim
x→2+

(3x− 3) = 3
f(2) = 22 = 4

Thus f(x) is not continuous from the
right at x = 2.

50. No. f(x) is not defined at x = 2.

51. A function is continuous from the left
at x = a if lim

x→a−
f(x) = f(a).

(a) lim
x→2−

f(x) = lim
x→2−

x2 = 4

f(2) = 5
Thus f(x) is not continuous
from the left at x = 2.

(b) lim
x→2−

f(x) = lim
x→2−

x2 = 4

f(2) = 3
Thus f(x) is not continuous
from the left at x = 2.

(c) lim
x→2−

f(x) = lim
x→2−

x2 = 4

f(2) = 4
Thus f(x) is continuous from the
left at x = 2.
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(d) f(x) is not continuous from the
left at x = 2 because f(2) is un-
defined.

52. (a) Limit might exist if g(a) is also
0.

(b) f(x) is definitely discontinuous
because f(a) does not exist.

53. Need g(30) = 100 and g(34) = 0.
We may take g(T ) to be linear.

m =
0− 100
34− 30 = −25

y = −25(x− 34)
g(T ) = −25(T − 34)

54. lim
x→0

f(g(x)) = lim
x→0
(2x)2 = 0.

f(lim
x→0

g(x)) = f(lim
x→0

2x) = f(0) = 4.

lim
x→0

f(g(x)) 6= f(lim
x→0

g(x)).

55.

100

80

60

40

20

0

x

140120100806040200

y

The graph is discontinuous at x =
100. This is when the box starts mov-
ing.

56. The Intermediate Value Theorem
does not apply because the function
is not continuous over the interval
[−1, 2] (it is undefined at x = 0). The
method of bisections converges to the
discontinuity at x = 0.

57. Let f(t) be her distance from home
as a function of time on Monday. Let

g(t) be her distance from home as a
function of time on Tuesday. Let t
be given in minutes, with t = 0 cor-
responding to 7:13 a.m. Then she
leaves home at t = 0 and arrives
at her destination at t = 410. Let
h(t) = f(t) − g(t). If h(t) =0 for
some t, then the saleswoman was at
exactly the same place at the same
time on both Monday and Tuesday.
h(0) = f(0) − g(0) = −g(0) < 0 and
h(410) = f(410)− g(410) = f(410) >
0. By the Intermediate Value Theo-
rem, there is a t in the interval [0, 410]
such that h(t) = 0.

58. My car was going forward as I ap-
proached the stop sign, rolled back-
ward for a moment, then proceded
forward again, so my car’s velocity
was positive, then negative, then pos-
itive again. Because my car’s velocity
is continuous, the Intermediate Value
Theorem guarantees that the velocity
must have been 0 in between changing
from positive to negative, and again
0 between changing from negative to
positive. This stopping is instanta-
neous; the police officer wanted to see
me stop for long enough to look both
ways and determine if it was safe to
proceed.

59.

x

1612840

52000

50000

48000

46000

44000

42000

40000

38000

The function s(t) has jump disconti-
nuities every three months when the
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salary suddenly increases by $2000.
In the function f(t), the $2000 in-
crease occurs gradually over the 3
month period, so f(t) is continuous.
It might be easier to do calculations
with f(t) because it is continuous and
because it is given by a simpler for-
mula.

60. Theorem 4.2: Suppose that f and g
are continuous at x = a. Then (ii)
(f · g) is continuous at x = a and (iii)
(f/g) is continuous at x = a.

Proof: (ii) lim
x→a

f(x) · g(x) = lim
x→a

f(x) ·
lim
x→a

g(x) by Theorem 3.1. This equals

f(a) · g(a) = (f · g)(a) since f and g
are continuous at x = a.

(iii) lim
x→a

f(x)/g(x) = lim
x→a

f(x)/ lim
x→a

g(x)

by Theorem 3.1. This equals
f(a)/g(a) = (f/g)(a) since f and g
are continuous at x = a and g(a) 6= 0.

61. We already know f(x) 6= 0 for a <
x < b. Suppose f(d) < 0 for some d,
a < d < b. Then by the Intermediate
Value Theorem, there is an e in the
interval [c, d] such that f(e) = 0. But
this e would also be between a and b,
which is impossible. Thus, f(x) > 0
for all a < x < b.

62. Using the method of bisections start-
ing with interval [−3,−2] yields

x f(x)
−3 −177
−2 5
−2.5 −47.16
−2.25 −14.17
−2.125 −3.14
−2.0625 1.256
−2.09375 −0.858
The root is in (−2.09375,−2.0625).
The actual root is approximately
−2.08136.

The other root, approximately
1.15538, is found similarly.

63. lim
x→0

xf(x) = lim
x→0

x lim
x→0

f(x)

= 0f(0) = 0

64. The function

f(x) =

½
-1 x ≤ 0
1 0 < x

is not continuous at x = 0, but xf(x)
equals |x| and lim

x→0
xf(x) = 0.

65. lim
x→a

g(x) = lim
x→a

|f(x)| =
¯̄̄
lim
x→a

f(x)
¯̄̄

= |f(a)| = g(a).

66. It is not true. The function f(x)
from the solution to exercise 64 is a
counter-example. |f(x)| = 1 for all x,
and so |f(x)| is continuous, but f(x)
is not.

67. Let b ≥ a. Then

lim
x→b

h(x) = lim
x→b

µ
max
a≤t≤b

f(t)

¶
= max

a≤t≤b

³
lim
t→b

f(t)
´

= h(b)

since f is continuous. Thus, h is con-
tinuous for x ≥ a.

No, the property would not be true if
f were not assumed to be continuous.
A counterexample is

f(x) =

½
1 if a ≤ x < b
2 if b ≤ x

Then h(x) = 1 for a ≤ x < b, and
h(x) = 2 for x ≥ b. Thus, h is not
continuous at x = b.
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68. The function f(x) is discontinuous
where the denominator is 0, that is,
at x = 0, x = 1 and x = 2.

y

1.5

1

0.5

0

-0.5

-1

-1.5

x

43210-1-2

1.5 Limits Involving

Infinity

1. (a) lim
x→1−

1− 2x
x2 − 1 =∞.

(b) lim
x→1+

1− 2x
x2 − 1 = −∞.

(c) Does not exist.

2. (a) lim
x→−1−

1− 2x
x2 − 1 =∞.

(b) lim
x→−1+

1− 2x
x2 − 1 = −∞.

(c) Does not exist.

3. (a) lim
x→2−

x− 4
x2 − 4x+ 4 = −∞

(b) lim
x→2+

x− 4
x2 − 4x+ 4 = −∞

(c) lim
x→2

x− 4
x2 − 4x+ 4 = −∞

4. (a) lim
x→−1−

1− x

(x+ 1)2
=∞

(b) lim
x→−1+

1− x

(x+ 1)2
=∞

(c) lim
x→−1

1− x

(x+ 1)2
=∞

5. lim
x→2−

−x√
4− x2

= −∞.

As x approaches 2 from below, the nu-
merator is near −2 and the denomi-
nator is small and positive, so the fac-
tion goes to −∞.

6. lim
x→−1−

(x2 − 2x− 3)−2/3 =∞.
As x approaches −1, x2 − 2x − 3 is
small, so (x2− 2x− 3)2/3 is small and
positive, so (x2 − 2x− 3)−2/3 is large
and positive, so the limit is ∞.

7. lim
x→−∞

−x√
4 + x2

= lim
x→−∞

−x
−x
q

4
x2
+ 1

= lim
x→−∞

1q
4
x2
+ 1

=
1√
1
= 1

8. lim
x→∞

2x2 − x+ 1

4x2 − 3x− 1
= lim

x→∞
2x2 − x+ 1

4x2 − 3x− 1
µ
1/x2

1/x2

¶
= lim

x→∞
2− 1/x+ 1/x2
4− 3/x− 1/x2 =

1

2
.

9. lim
x→∞

x3 − 2 cosx
3x2 + 4x− 1

= lim
x→∞

x2
¡
x− 2 cosx

x2

¢
x2
¡
3 + 4

x
− 1

x2

¢
= lim

x→∞

¡
x− 2 cosx

x2

¢
3 + 4

x
− 1

x2

=∞

10. lim
x→∞

2x2 − 1
4x3 − 5x− 1 = 0.

11. lim
x→∞

ln 2x =∞.
Note that ln 2x = ln 2 + lnx, so it is
enough to show that lnx goes to∞ as
x goes to ∞. This can be seen from
the graph of the function lnx on page
51.

12. lim
x→0+

ln 2x = −∞.
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13. lim
x→0+

e−2/x = 0.

When x is small and positive, −2/x
is large and negative, and e raised to
a large negative power is very small.

14. lim
x→∞

e−2/x = 1.

15. lim
x→∞

cot−1 x = 0.

(Compare Example 5.8) We are look-
ing for the angle that θ must approach
as cot θ goes to∞. Look at the graph
of cot θ. To define the inverse cotan-
gent, you must pick one branch of this
graph, and the standard choice is the
branch immediately to the right of the
y-axis. Then as cot θ goes to ∞, the
angle goes to 0.

16. lim
x→∞

sec−1 x =
π

2
.

17. lim
x→∞

e2x−1 =∞.
As x gets large, 2x−1 gets large, and
e raised to a large positive power is
large and positive.

18. lim
x→0

e1/x
2

=∞.
When x is small, x2 is small and posi-
tive, so 1/x2 is large and positive, and
e raised to a large positive power is
large and positive.

19. lim
x→∞

sin 2x does not exist. As x gets

larger and larger, the values of sin 2x
oscillate between 1 and −1.

20. lim
x→∞

(e−3x cos 2x) = 0.

The function e−3x cos 2x is squeezed
between −e−3x and e−3x, both of
which go to 0 as x goes to ∞. By
the squeeze theorem,
lim
x→∞

(e−3x cos 2x) = 0.

21. As x goes to ∞, both e3x and ex go
to ∞ as well. Furthermore, as x goes
to ∞, so does lnx. Thus it looks like

lim
x→∞

µ
ln(2 + e3x)

ln(1 + ex)

¶
=
∞
∞ .

This is an indeterminate form, i.e., we
don’t know from this analysis what
happens in this limit. Looking at nu-
merical and/or graphing evidence, we
guess that the limit is 3.

22. lim
x→∞

sin(tan−1 x) = lim
x→π

2

(sinx) = 1.

23. lim
x→π

2
−
e− tanx = lim

x→∞
e−x

= lim
x→−∞

ex = 0, but

lim
x→π

2
+
e− tanx = lim

x→−∞
e−x

= lim
x→∞

ex =∞,
so the limit does not exist.

24. lim
x→0+

tan−1(lnx) = lim
x→−∞

tan−1 x

= −π
2
.

25. Since 4 + x2 is never 0, there are no
vertical asymptotes. We have

lim
x→∞

x√
4 + x2

= lim
x→∞

x

x
q

4
x2
+ 1

= lim
x→∞

1q
4
x2
+ 1

=
1√
1
= 1

and
lim

x→−∞
x√
4 + x2

= lim
x→−∞

x

−x
q

4
x2
+ 1

= lim
x→−∞

−1q
4
x2
+ 1
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=
−1√
1
= −1,

so there are horizontal asymptotes at
y = 1 and y = −1.

26. The function is only defined in
(−2, 2). Two one-sided vertical
asymptotes at x = ±2. f(x) → ∞
as x → 2−, and f(x) → −∞ as
x→ −2+. No horizontal asymptotes.

27. 4− x2 = 0 ⇒ 4 = x2 so we have ver-
tical asymptotes at x = ±2. We have
lim

x→±∞
x

4− x2

= lim
x→±∞

x

x2
¡
4
x2
− 1¢

= lim
x→±∞

1

x
¡
4
x2
− 1¢ = 0.

So there is a horizontal asymptote at
y = 0.

28. Vertical asymptotes at x = ±2.
f(x)→∞ as x→ 2− and x→ −2+.
f(x) → −∞ as x → 2+ and x →
−2−.
Horizontal asymptote at y = −1.

29. The denominator factors: x2 − 2x −
3 = (x − 3)(x + 1). Since neither
x = 3 nor x = −1 are zeros of the nu-
merator, we see that f(x) has vertical
asymptotes at x = 3 and x = −1.
f(x)→ −∞ as x→ 3−,
f(x)→∞ as x→ 3+,
f(x)→∞ as x→ −1−, and
f(x)→ −∞ as x→ −1+.
We have

lim
x→±∞

3x2 + 1

x2 − 2x− 3
lim

x→±∞
3 + 1/x2

1− 2/x− 3/x2 = 3.

So there is a horizontal asymptote at
y = 3.

30. Vertical asymptote at x = −2.
f(x)→∞ as x→ −2−.
f(x) → −∞ as x → −2+ and x →
−2−.
No horizontal asymptotes.

31. The function lnx has a one-sided
vertical asymptote at x = 0, so
f(x) = ln(1− cosx) will have a verti-
cal asymptote whenever 1−cosx = 0,
i.e., whenever cosx = 1. This hap-
pens when x = 2kπ for any integer
k. Since 1 − cosx ≥ 0 for all x,
f(x) is defined at all points except
for these vertical asymptotes. Thus as
f(x) approaches any of these asymp-
totes (from either side), it behaves
like lnx approaching 0 from the right,
so f(x) → −∞ as x approaches any
of these asymptotes from either side.

32. One-sided vertical asymptote at x =
−2. f(x) → −∞ as x → −2+. Hori-
zontal asymptote at y = 1

2
.

33. The function is continuous for all x,
so no vertical asymptotes. We have

lim
x→∞

4 tan−1 x−1 = 4( lim
x→∞

tan−1 x)−1
= 4(π/2)− 1
= 2π − 1

and

lim
x→−∞

4 tan−1 x− 1
= 4( lim

x→−∞
tan−1 x)−1

= 4(−π/2)− 1
= −2π − 1,

so there are horizontal asymptotes at
y = 2π − 1 and y = −2π − 1.
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34. One-sided vertical asymptote at x =
0. f(x) → ∞ as x → 0−. Horizontal
asymptote at y = 3.

35. Vertical asymptotes at x = ±2. The
slant asymptote is y = −x.

36. Vertical asymptote at x = 2. The
slant asymptote is y = x+ 2.

37. Vertical asymptotes at

x =
−1±√17

2
.

The slant asymptote is y = x− 1.
38. Vertical asymptote at x = − 3

√
2. The

slant asymptote is y = x.

39. When x is large, the value of the frac-
tion is close to 0.

40. lim
x→∞

2x

x2
=∞.

41. When x is large, the value of the frac-
tion is very close to 1

2
.

42. When x is large and negative, the
value of the fraction is very close to
2.

43. lim
x→∞

x3 + 4x+ 5

ex/2
= 0.

44. lim
x→∞

(ex/3 − x4) =∞.

45. When x is close to −1, the value of
the fraction is close to 1.

46. lim
x→0

ex − 1
x

= 1.

47. When x is close to 0, the value of the
fraction is large and negative, so the
limit appears to be −∞.

48. lim
x→0

ln(x2)

x2
= −∞.

49. We multiply by
√
4x2 − 2x+ 1 + 2x√
4x2 − 2x+ 1 + 2x

to get:

lim
x→∞

(
√
4x2 − 2x+ 1− 2x)

= lim
x→∞

−2x+ 1√
4x2 − 2x+ 1 + 2x ·

1/x

1/x

= lim
x→∞

−2 + 1/xp
4− 2/x+ 1/x2 + 2

=
−2√
4 + 2

= −1
2
.

50. lim
x→∞

(
√
x2 + 3− x) ·

√
x2 + 3 + x√
x2 + 3 + x

= lim
x→∞

3√
x2 + 3 + x

= 0.

51. lim
x→∞

(
√
5x2 + 4x+ 7−

√
5x2 + x+ 3)

If we multiply by
√
5x2 + 4x+ 7 +

√
5x2 + x+ 3√

5x2 + 4x+ 7 +
√
5x2 + x+ 3

,

we get

lim
x→∞

(5x2 + 4x+ 7)− (5x2 + x+ 3)√
5x2 + 4x+ 7 +

√
5x2 + x+ 3)

= lim
x→∞

3x+ 4√
5x2 + 4x+ 7 +

√
5x2 + x+ 3

= lim
x→∞

3 + 4
xq

5 + 4
x
+ 7

x2
+
q
5 + 1

x
+ 3

x2

=
3

2
√
5
=
3
√
5

10

52. lim
x→∞

µ
1 +

3

x

¶2x
= lim

x→∞

"µ
1 +

3

x

¶x
3

#6

=

"
lim
x→∞

µ
1 +

1
x
3

¶x
3

#6
= e6.
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53.

y

40

20

0

-20

-40

x

420-2-4

on [−10, 10] by [−100, 100]
The horizontal asymptote is y = 0 ap-
proached only as x→∞. The graph
crosses the horizontal asymptote an
infinite number of times.

54. lim
x→∞

f(x) = lim
x→0+

f(1/x) because

1/x→∞ as x→ 0+.
lim

x→−∞
f(x) = lim

x→0−
f(1/x) because

1/x→ −∞ as x→ 0−.

55. lim
x→∞

µ
1 +

1

x

¶x

= lim
x→0+

(1 + x)1/x

= lim
x→0−

(1 + x)1/x = lim
x→−∞

µ
1 +

1

x

¶x

56. One possible pair: f(x) = 1/x2,
g(x) = 1/x. This pair would violate
Theorem 3.1 because ∞−∞ and ∞

∞
do not make sense outside of a limit.

57. h(0) =
300

1 + 9(.80)
=
300

10
= 30 mm

lim
t→∞

300

1 + 9(.8t)
= 300 mm

58. Length at t = 0 is h(0) = 20 mm.
Length eventually is lim

t→∞
h(t) = 50

mm.

59. lim
x→0+

80x−.3 + 60
2x−.3 + 5

µ
x.3

x.3

¶
= lim

x→0+
80 + 60x.3

2 + 5x.3

=
80

2
= 40 mm

lim
x→∞

80x−.3 + 60
2x−.3 + 5

=
60

5
= 12 mm

60. Re-write the function as

f(x) =
80 + 60x0.3

8 + 15x0.3

to see that the size with no light is
f(0) = 10 mm, and the size with infi-
nite light is lim

x→∞
f(x) = 4 mm.

61. f(x) =
80x−0.3 + 60
10x−0.3 + 30

62. f(t) → 0 as t → 0 and t → ∞. This
makes sense because the drug will re-
quire some time to reach the muscles,
and should wear off over time.

63. lim
t→∞

vN = lim
t→∞

Ft

m
=∞

lim
t→∞

vE = lim
t→∞

Fct√
m2c2 + F 2t2

= lim
t→∞

Fct

t
q

m2c2

t2
+ F 2

= lim
t→∞

Fcq
m2c2

t2
+ F 2

=
Fc√
F 2

= c

64. lim
v→0

m = m0 is the mass when the

velocity is zero, or the rest mass.
lim
v→c−

m = ∞, so as velocity ap-

proaches the speed of light, mass
increases without bound. At a
speed of 9000ft/s, the masses increase
by a factor of 1√

1−90002/9.82×1016 ≈
1.0000000000421699292. The actual
increase for rest mass m0 = 6 is
2.53× 10−10.

65. As in Example 5.10, the terminal ve-

locity is −
q

32
k
. When k = 0.00064,
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the terminal velocity is −
q

32
.00064

≈
−224. When k = 0.00128, the termi-

nal velocity is −
q

32
.00128

≈ −158.

Solve
q

32
ak
= 1

2

q
32
k
. Squaring both

sides,
32

ak
=
1

4
· 32
k
so a = 4.

66. Looking at the graph, we estimate the
time to 90% of terminal velocity is
about 20 seconds.

0

-200

-100

-300

-400

20 6040100 50

x

30

The terminal velocity when k = 0.001
is 178.9, and 90% of terminal velocity
is 161.0. From the graph we see that
it takes about 8.2s to reach 90% of
terminal velocity.

t

30252015
0

10

-40

5

-120

-80

-160

0

67. Wemust restrict the domain to v0 ≥ 0
because the formula makes sense only
if the rocket is launched upward. To
find ve, set 19.6R − v20 = 0. Us-
ing R ≈ 6,378,000 meters, we get
v0 =

√
19.6R ≈ 11,180m/s. If the

rocket is launched with initial veloc-
ity ≥ ve, it will never return to earth;

hence ve is called the escape velocity.

2E10

1E10

1.5E10

10000

5E9

0E0
2000 6000

x

4000 80000

68. If the degree of the polynomial in the
denominator is larger, the horizontal
asymptote is y = 0.

69. Suppose the degree of q is n. If we
divide both p(x) and q(x) by xn, then
the new denominator will approach
a constant while the new numerator
tends to ∞, so there is no horizontal
asymptote.

70. If the horizontal asymptote is y = 2,
the degrees of the numerator and de-
nominator must be the same.

71. When we do long division, we get a
remainder of x+2, so the degree of p
is one greater than the degree of q.

72. The function q(x) =
x2

2
− 9
2
satisfies

the given conditions.

73. The function q(x) = −2(x−2)(x−3)
satisfies the given conditions.

74. The function g(x) = 2
π
·tan−1 x·(x−4)

satisfies the given conditions.

75. True.

76. False if b = 0; otherwise true.

77. False.

78. True
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79. True.

80. False. For example, f(x) = 2x and
g(x) = x.

81. Vertical asymptote at x = 2. Hori-
zontal asymptotes at y = 4 and y = 0.

82. x2 − 4x = x(x− 4), so there is a ver-
tical asymptote at x = 0.
x2− 7x+10 = (x− 2)(x− 5) so there
are vertical asymptotes at x = 2 and
x = 5.

lim
x→∞

f(x) = lim
x→∞

x2 − 1
x2 − 7x+ 10 = 1

lim
x→−∞

f(x) = lim
x→−∞

x+ 3

x2 − 4x = 0
So there are horizontal asymptotes at
y = 0 and y = 1.

83. For any positive constant a, e−at → 0
as t → ∞. Since sin t oscilates be-
tween −1 and 1, e−at sin t → 0 as
t→∞. In the following graph, we see
that suspension system A damps out
at about 5 seconds, while system B
takes about 18 seconds to damp out.

0.6

0.4

t

0.2

0
15

-0.2

5 20100

84. (a) lim
x→−∞

pn(x)

= lim
x→−∞

¡
anx

n + an−1xn−1 + · · ·+ a0
¢

= lim
x→−∞

h
xn
³
an +

an−1
x

+ · · ·+ a0
x

´i
= lim

x→−∞
anx

n

When the degree n is odd, if an
is positive, the limit as x→ −∞

is −∞, and if an is negative, the
limit as x→ −∞ is +∞.

(b) As in part (a), we have
lim

x→−∞
pn(x) = lim

x→−∞
anx

n

When the degree n is even, if an
is positive, the limit as x→ −∞
is +∞, and if an is negative, the
limit as x→ −∞ is −∞.

85. g(x) = sinx, h(x) = x at a = 0

86. The statement is not true if h and g
are allowed to be any functions. For
example if g has an asymptote at a,
then h(a) need not be zero. If h and
g are polynomials, then the statement

is true. The only way for f(x) =
g(x)

h(x)
to have a vertical asymptote at x = a
is for h(a) = 0.

87. lim
x→0+

x1/(lnx) = e ≈ 2.71828

88. lim
x→1+

(lnx)x
2−1 = 1.

89. lim
x→∞

x1/x = 1

90. lim
x→−∞

lnx

x2
is undefined, since the nat-

ural log is not defined for negative val-
ues.

1.6 Formal Definition of

the Limit

1. (a) From the graph, we determine
that we can take δ = 0.316, as
shown below.
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y

1.1

1.05

1

0.95

0.9

x

0.30.20.10-0.1-0.2-0.3

(b) From the graph, we determine
that we can take δ = 0.223, as
shown below.

y

1.04

1.02

1

0.98

0.96

x

0.20.10-0.1-0.2

2. (a) From the graph, we determine
that we can take δ = 0.025, as
shown below.

y

5.1

5.05

5

4.95

4.9

x

2.022.0121.991.98

(b) From the graph, we determine
that we can take δ = 0.0125, as
shown below.

y

5.1

5.05

5

4.95

4.9

x

2.022.0121.991.98

3. (a) From the graph, we determine
that we can take δ = 0.45, as
shown below.

y

1.1

1.05

1

0.95

0.9

x

0.40.20-0.2-0.4

(b) From the graph, we determine
that we can take δ = 0.315, as
shown below.

y

1.04

1.02

1

0.98

0.96

x

0.30.20.10-0.1-0.2-0.3

4. (a) From the graph, we determine
that we can take δ = 0.1, as
shown below.
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y

0.1

0.05

0

-0.05

-0.1

x

1.641.61.561.521.48

(b) From the graph, we determine
that we can take δ = 0.05, as
shown below.

y

0.04

0.02

0

-0.02

-0.04

x

1.621.61.581.561.54

5. (a) From the graph, we determine
that we can take δ = 0.38, as
shown below.

2

1.96

1.92

x

1.31.21.110.90.80.7

y

2.08

2.04

(b) From the graph, we determine
that we can take δ = 0.2, as
shown below.

y

2.04

2.02

2

1.98

1.96

x

1.21.110.90.8

6. (a) From the graph, we determine
that we can take δ = 0.19, as
shown below.

y

1.1

1.05

1

0.95

0.9

x

-1.85-1.9-1.95-2-2.05-2.1-2.15

(b) From the graph, we determine
that we can take δ = 0.095, as
shown below.

y

1.04

1.02

1

0.98

0.96

x

-1.92-1.96-2-2.04-2.08

7. (a) From the graph, we determine
that we can take δ = 0.02, as
shown below.
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y

3.08

3.04

3

2.96

2.92

x

1.021.0110.990.98

(b) From the graph, we determine
that we can take δ = 0.01, as
shown below.

y

3.04

3.02

3

2.98

2.96

x

1.011.00510.9950.99

8. (a) From the graph, we determine
that we can take δ = 0.12, as
shown below.

y

1.1

1.05

1

0.95

0.9

x

2.12.0521.951.9

(b) From the graph, we determine
that we can take δ = 0.06, as
shown below.

y

1.04

1.02

1

0.98

0.96

x

2.062.042.0221.981.961.94

9. We want |3x− 0| < ε
⇔ 3|x| < ε
⇔ |x| = |x− 0| < ε/3
Take δ = ε/3.

10. We want |3x− 3| < ε
⇔ 3|x− 1| < ε
⇔ |x− 1| < ε/3
Take δ = ε/3.

11. We want |3x+ 2− 8| < ε
⇔ |3x− 6| < ε
⇔ 3|x− 2| < ε
⇔ |x− 2| < ε/3
Take δ = ε/3.

12. We want |3x+ 2− 5| < ε
⇔ |3x− 3| < ε
⇔ 3|x− 1| < ε
⇔ |x− 1| < ε/3
Take δ = ε/3.

13. We want |3− 4x− (−1)| < ε
⇔ |− 4x+ 4| < ε
⇔ 4|− x+ 1| < ε
⇔ 4|x− 1| < ε
⇔ |x− 1| < ε/4
Take δ = ε/4.

14. We want |3− 4x− 7| < ε
⇔ |− 4x− 4| < ε
⇔ 4|− x− 1| < ε
⇔ 4|x+ 1| < ε
⇔ |x+ 1| < ε/4
Take δ = ε/4.
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15. We want

¯̄̄̄
x2 + x− 2

x− 1 − 3
¯̄̄̄
< ε.

We have¯̄̄̄
x2 + x− 2

x− 1 − 3
¯̄̄̄

=

¯̄̄̄
(x+ 2)(x− 1)

x− 1 − 3
¯̄̄̄

= |x+ 2− 3|
= |x− 1|

Take δ = ε.

16. We want

¯̄̄̄
x2 − 1
x+ 1

− (−2)
¯̄̄̄
< ε.

We have¯̄̄̄
x2 − 1
x+ 1

+ 2

¯̄̄̄
=

¯̄̄̄
(x+ 1)(x− 1)

x+ 1
+ 2

¯̄̄̄
= |x− 1 + 2|
= |x+ 1|

Take δ = ε.

17. We want
¯̄
x2 − 1− 0¯̄ < ε.

We have |x2− 1| = |x− 1||x+1|. We
require that δ < 1, i.e., |x− 1| < 1 so
0 < x < 2 and |x+ 1| < 3. Then
|x2 − 1| = |x− 1||x+ 1| < 3|x− 1|.
Requiring this to be less than ε gives
|x− 1| < ε/3, so δ = min{1, ε/3}.

18. We want
¯̄
x2 − x+ 1− 1¯̄ < ε.

We have |x2 − x| = |x||x− 1|. We re-
quire that δ < 1, i.e., |x − 1| < 1 so
0 < x < 2 and |x| < 2. Then
|x2 − x| = |x||x− 1| < 2|x− 1|.
Requiring this to be less than ε gives
|x− 1| < ε/2, so δ = min{1, ε/2}.

19. We want
¯̄
x2 − 1− 3¯̄ < ε.

We have |x2− 4| = |x− 2||x+2|. We
require that δ < 1, i.e., |x− 1| < 1 so
1 < x < 3 and |x+ 2| < 5. Then
|x2 − 4| = |x− 2||x+ 2| < 5|x− 2|.
Requiring this to be less than ε gives
|x− 2| < ε/5, so δ = min{1, ε/5}.

20. We want
¯̄
x3 + 1− 1¯̄ < ε, i.e., |x3| <

ε. Take δ = 3
√
ε.

21. Let f(x) = mx + b. Since f(x) is
continous, we know that lim

x→a
f(x) =

ma+ b. So we want to find a δ which
forces |mx+ b− (ma+ b)| < ε. But
|mx+ b− (ma+ b)| = |mx−ma|

= |m||x− a|.
So as long as |x − a| < δ = ε/|m|,
we will have |f(x) − (ma + b)| < ε.
This δ clearly does not depend on a.
This is due to the fact that f(x) is
a linear function, so the slope is con-
stant, which means that the ratio of
the change in y to the change in x is
constant.

22. Since the δ obtained in exercise 17 is
different from that of exercise 19, we
see immediately that the value of δ for
lim
x→a
(x2+ b) does depend on a. In this

case the ratio of the change in y to the
change in x depends very much on the
value of a. Near the origin, the graph
is not very steep at all, while away
from the origin the graph can become
very steep indeed.

23. For a function f(x) defined on some
open interval (c, a) we say

lim
x→a−

f(x) = L

if, given any number ε > 0, there
is another number δ > 0 such that
whenever x ∈ (c, a) and a−δ < x < a,
we have |f(x)− L| < ε.

For a function f(x) defined on some
open interval (a, c) we say

lim
x→a+

f(x) = L

if, given any number ε > 0, there
is another number δ > 0 such that
whenever x ∈ (a, c) and a < x < a+δ,
we have |f(x)− L| < ε.
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24. Note that

¯̄̄̄
1

x
− 1
¯̄̄̄
=

¯̄̄̄
1− x

x

¯̄̄̄
. As

x → 1−, we see that 1 − x > 0 and
x > 0 (we need not consider negative
values of x). Thus we need to solve

the inequality
1− x

x
< 0.1:

1− x

x
< 0.1

1− x < 0.1x

1 < 1.1x

1

1.1
< x

0.909090 . . . < x

Thus we take
δ1 = 1− 0.909090 . . . = 0.090909 . . ..
Similarly, as x→ 1+, we have x−1 >
0 and x > 0. Therefore we need

x− 1
x

< 0.1

x− 1 < 0.1x
0.9x < 1

x <
1

0.9
x < 1.111111 . . .

Thus we take
δ2 = 1.111111 . . .− 1 = 0.111111 . . ..
In the definition of the limit we need
to take the smaller δ (δ1) to ensure
that |f(x) − L| < ε on both sides of
a = 1.

To prove that lim
x→1

1/x = 1, we take

δ < 1/2, so that 1/2 < x < 3/2. Then¯̄̄̄
1− x

x

¯̄̄̄
<

¯̄̄̄
1− x
1
2

¯̄̄̄
= 2|1− x|
= 2|x− 1|

To get this to be less than ε, we take
δ = min{1/2, ε/2}.

25. As x→ 1+, x− 1 > 0 so we compute
2

x− 1 > 100

2 > 100(x− 1)
2

100
> x− 1

So take δ = 2/100.

26. As x→ 1−, x− 1 < 0 so we compute
2

x− 1 < −100
2 > −100(x− 1)

− 2

100
< x− 1

2

100
> −x+ 1 = |x− 1|

So take δ = 2/100.

27. We look at the graph of cotx as x→
0+ and we find that we should take
δ = 0.00794.

28. We look at the graph of cotx as x→
π− and we find that we should take
δ = 0.0098.

29. As x→ 2−, 4−x2 > 0 so we compute
2√
4− x2

> 100

2 > 100
√
4− x2

2

100
>
√
4− x2

4

10000
> 4− x2 = (2− x)(2 + x)

Take δ < 1 so that 1 < x < 3 so we
have 2 + x < 5. Then
(2−x)(2+x) < (2−x)5. Now, if we re-
quire |x−2| < 4

50000
then 2√

4−x2 > 100.
So let δ = 4

50000
.

30. We want lnx < −100. This is true as
long as 0 < x < e−100.
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31. We want M such that if x > M ,¯̄̄̄
x2 − 2

x2 + x+ 1
− 1
¯̄̄̄
< 0.1

We have¯̄̄̄
x2 − 2

x2 + x+ 1
− 1
¯̄̄̄

=

¯̄̄̄
x2 − 2− (x2 + x+ 1)

x2 + x+ 1

¯̄̄̄
=

¯̄̄̄ −x− 3
x2 + x+ 1

¯̄̄̄
=

¯̄̄̄
x+ 3

x2 + x+ 1

¯̄̄̄
Now, as long as x > 3, we have¯̄̄̄

x+ 3

x2 + x+ 1

¯̄̄̄
<

¯̄̄̄
2x

x2 + x

¯̄̄̄
=

¯̄̄̄
2

x+ 1

¯̄̄̄
We want

¯̄̄̄
2

x+ 1

¯̄̄̄
< 0.1. Since x →

∞, we can take x > 0, so we solve
2

x+ 1
< 0.1 to get x > 19, i.e.,

M = 19.

32. Since x→∞, we can take x > 4 and
then ¯̄̄̄

x− 2
x2 + x+ 1

¯̄̄̄
<

¯̄̄̄
x

x2 + x

¯̄̄̄
=

¯̄̄̄
1

x+ 1

¯̄̄̄
Now we solve

1

x+ 1
< 0.1 to get

x > 9, i.e., M = 9.

33. We have¯̄̄̄
x2 + 3

4x2 − 4 −
1

4

¯̄̄̄
=

¯̄̄̄
x2 + 3− (x2 − 1)

4x2 − 4
¯̄̄̄

=

¯̄̄̄
4

4x2 − 4
¯̄̄̄

=

¯̄̄̄
1

x2 − 1
¯̄̄̄

Since x→ −∞, we may take x < −1
so that x2 − 1 > 0. We now need
1

x2 − 1 < 0.1. Solving for x gives

|x| > √11 ≈ 3.3166. So we can take
N = −4.

34. We have¯̄̄̄
3x2 − 2
x2 + 1

− 3
¯̄̄̄
=

¯̄̄̄
3x2 − 2− (3x2 + 3)

x2 + 1

¯̄̄̄
=

¯̄̄̄ −5
x2 + 1

¯̄̄̄
=

¯̄̄̄
5

x2 + 1

¯̄̄̄

We now need
5

x2 + 1
< 0.1. Solving

for x gives |x| > 7, i.e., N = −7.

35. We want |e−2x| < 0.1. Since e−2x > 0
for any x, this is the same as e−2x <
0.1 so −2x < ln(0.1) and then x >
ln(0.1)

−2 ≈ 1.15. We may take M = 2.

36. We look at the graph of
ex + x

ex − x2
as x

gets larger and we find that we should
take M = 7.

37. Let ε > 0 be given and let M =
3
p
2/ε. Then if x > M ,

¯̄̄̄
2

x3

¯̄̄̄
<

¯̄̄̄
¯̄̄ 2³

3
p
2/ε
´3
¯̄̄̄
¯̄̄ = ε

38. Let ε > 0 be given and let N =
− 3
p
3/ε. Then if x < N ,

¯̄̄̄
3

x3

¯̄̄̄
<

¯̄̄̄
¯̄̄ 3³

3
p
3/ε
´3
¯̄̄̄
¯̄̄ = ε
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39. Let ε > 0 be given and letM = ε−1/k.
Then if x > M ,¯̄̄̄

1

xk

¯̄̄̄
<

¯̄̄̄
¯ 1

(ε−1/k)k

¯̄̄̄
¯ = ε

40. Let ε > 0 be given and let N =
−ε−1/2k. Then if x < N ,¯̄̄̄

1

x2k

¯̄̄̄
<

¯̄̄̄
¯ 1

(−ε−1/2k)2k
¯̄̄̄
¯ = ε

41. Let ε > 0 be given and assume ε ≤
1/2. Let N = −(1

ε
− 2)1/2. Then if

x < N ,¯̄̄̄
1

x2 + 2
− 3− (−3)

¯̄̄̄
=

¯̄̄̄
1

x2 + 2

¯̄̄̄
<

¯̄̄̄
¯ 1¡−(1

ε
− 2)1/2¢2 + 2

¯̄̄̄
¯ = ε

42. Let ε > 0 be given and let M =
ε−1/2 + 7. Then if x > M ,¯̄̄̄

1

(x− 7)2
¯̄̄̄
<

¯̄̄̄
¯ 1

(ε−1/2 + 7− 7)2
¯̄̄̄
¯ = ε

43. Let N < 0 be given and let δ =
4
p−2/N . Then for any x such that
|x+ 3| < δ,¯̄̄̄ −2
(x+ 3)4

¯̄̄̄
>

¯̄̄̄
¯ −2
( 4
p−2/N)4

¯̄̄̄
¯ = |N |

44. Let M > 0 be given and let δ =p
3/M . Then for any x such that

|x− 7| < δ,¯̄̄̄
3

(x− 7)2
¯̄̄̄
>

¯̄̄̄
¯ 3

(
p
3/M)2

¯̄̄̄
¯ = |M |

45. Let M > 0 be given and let δ =p
4/M . Then for any x such that

|x− 5| < δ,¯̄̄̄
4

(x− 5)2
¯̄̄̄
>

¯̄̄̄
¯ 4

(
p
4/M)2

¯̄̄̄
¯ = |M |

46. Let N < 0 be given and let δ =
6
p−6/N . Then for any x such that
|x+ 4| < δ,¯̄̄̄ −6
(x+ 4)6

¯̄̄̄
>

¯̄̄̄
¯ −6
( 6
p−6/N)6

¯̄̄̄
¯ = |N |

47. We observe that lim
x→1−

f(x) = 2 and

lim
x→1+

f(x) = 4. For any x ∈ (1, 2),

|f(x)−2| = |x2+3−2| = |x2+1| > 2.
So if ε ≤ 2, there is no δ > 0 to satisfy
the definition of limit.

48. We observe that lim
x→0−

f(x) = −1 and
lim
x→0+

f(x) = −2. For any x ∈ (−1, 0),

|f(x)−(−2)| = |x2−1+2| = |x2+1| > 1.
So if ε ≤ 1, there is no δ > 0 to satisfy
the definition of limit.

49. We observe that lim
x→1−

f(x) = 2 and

lim
x→1+

f(x) = 4. For any x ∈ (1,√2),

|f(x)− 2| = |5− x2 − 2|
= |3− x2| > |3− (

√
2)2| = 1.

So if ε ≤ 1, there is no δ > 0 to satisfy
the definition of limit.

50. We observe that lim
x→2−

f(x) = 1 and

lim
x→2+

f(x) = 4. For any x ∈ (2, 3),

|f(x)− 1| = |x2 − 1| > 3.
So if ε ≤ 3, there is no δ > 0 to satisfy
the definition of limit.
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51. We want to find, for any given ε > 0,
a δ > 0 such that whenever 0 <
|r − 2| < δ, we have |2r2 − 8| < ε.
We see that

|2r2 − 8| = 2|r2 − 4| = 2|r− 2||r+ 2|.

Since we want a radius close to 2, we
may take |r − 2| < 1 which implies
|r + 2| < 5 and so

|2r2 − 8| < 10|r − 2|

whenever |r− 2| < 1. If we then take
δ = min{1, ε/10}, we see that when-
ever 0 < |r − 2| < δ, we have

|2r2 − 8| < 10 · δ ≤ 10 · ε

10
= ε.

52. We want to find, for any given ε > 0,
a δ > 0 such that whenever 0 <
|r − 1

2
| < δ, we have |4

3
πr3 − π

6
| < ε.

We see that¯̄̄̄
4

3
πr3 − π

6

¯̄̄̄
=
4π

3

¯̄̄̄
r − 1

2

¯̄̄̄ ¯̄̄̄
r2 +

r

2
+
1

4

¯̄̄̄
.

Since we want a radius close to 1/2,
we may take |r − 1/2| < 1/2 so
0 < r < 1. Since the function
r2+ r/2+1/4 is increasing on the in-
terval (0, 1), we see that¯̄̄̄

r2 +
r

2
+
1

4

¯̄̄̄
< 1 +

1

2
+
1

4
=
7

4

whenever |r − 1/2| < 1/2. If we then
take δ = min

½
1

2
,
3ε

7π

¾
, we have

¯̄̄̄
4

3
πr3 − π

6

¯̄̄̄
<
7π

3

¯̄̄̄
r − 1

2

¯̄̄̄
<
7π

3
· 3ε
7π
= ε.

53. Let L = lim
x→a

f(x). Given any ε > 0,

we know there exists δ > 0 such that
whenever 0 < |x− a| < δ, we have

|f(x)− L| < ε

|c| .

Here, we can take ε/|c| instead of ε
because there is such a δ for any ε,
including ε/|c|. But now we have
|c · f(x)− c · L| = |c| · |f(x)− L|

< |c| · ε

|c| = ε.

Therefore, lim
x→a

c · f(x) = c · L, as de-
sired.

54. Let L1 = lim
x→a

f(x). Then, given any

ε > 0, there exists δ1 > 0 such that
whenever 0 < |x− a| < δ1, we have

|f(x)− L1| < ε

2
.

Similarly, let L2 = lim
x→a

g(x). Then,

given any ε > 0, there exists δ2 > 0
such that whenever 0 < |x− a| < δ2,
we have

|g(x)− L2| < ε

2
.

Note that

|(f(x) + g(x))− (L1 + L2)|
= |(f(x)− L1) + (g(x)− L2)|
≤ |f(x)− L1|+ |g(x)− L2|

by the triangle inequality. So when-
ever δ = min{δ1, δ2}, we have

|(f(x) + g(x))− (L1 + L2)|
≤ |f(x)− L1|+ |g(x)− L2|
<

ε

2
+

ε

2
= ε

as desired. The proof for f(x)− g(x)
is similar, noting that

|(f(x)− g(x))− (L1 − L2)|
= |(f(x)− L1) + (−1)(g(x)− L2)|
≤ |f(x)− L1|+ |g(x)− L2|.
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55. Let ε > 0 be given. Since lim
x→a

f(x) =

L, there exists δ1 > 0 such that when-
ever 0 < |x− a| < δ1, we have

|f(x)− L| < ε.

In particular, we know that

L− ε < f(x).

Similarly, since lim
x→a

h(x) = L, there

exists δ2 > 0 such that whenever
0 < |x− a| < δ2, we have

|h(x)− L| < ε.

In particular, we know that

h(x) < L+ ε.

Let δ = min{δ1, δ2}. Then whenever
0 < |x− a| < δ, we have

L− ε < f(x) ≤ g(x) ≤ h(x) < L+ ε.

Therefore

|g(x)− L| < ε

and so lim
x→a

g(x) = L as desired.

56. Let ε > 0 be given. If x < a, there
exists δ1 > 0 such that if 0 < |x−a| <
δ1, then |f(x) − L| < ε. Likewise, if
x > a, there exists δ2 > 0 such that if
0 < |x− a| < δ2, then |f(x)−L| < ε.
Let δ = min{δ1, δ2}. Then for any x
such that 0 < |x − a| < δ, we have
|f(x)− L| < ε.

57. Let ε > 0 be given. If lim
x→a

f(x) = L,

then there exists δ > 0 such that if
0 < |x− a| < δ, then |f(x)− L| < ε.
Since |f(x)−L−0| = |f(x)−L|, this
is precisely what we need to see that
lim
x→a
[f(x)− L] = 0.

58. Let ε > 0 be given. If lim
x→a
[f(x)−L] =

0, then there exists δ > 0 such that if
0 < |x−a| < δ, then |f(x)−L−0| < ε.
Since |f(x)−L−0| = |f(x)−L|, this
is precisely what we need to see that
lim
x→a

f(x) = L.

59. If 2 < x <
√
4.1 then 4 < x2 < 4.1 so

(for x ∈ (2,√4.1)),
x2 − 4 < 4.1− 4 = 0.1.
If
√
3.9 < x < 2 then 3.9 < x2 < 4 so

(for x ∈ (√3.9, 2)),
x2 − 4 > 3.9− 4 = −0.1.
For the limit definition, we need to
take δ = min{δ1, δ2} = δ1 to ensure
that x2 is within 0.1 of 4 on both sides
of x = 2.

60. If 2 < x <
√
4 + ε then 4 < x2 < 4+ε

so (for x ∈ (2,√4 + ε)),
x2 − 4 < 4 + ε− 4 = ε.

If
√
4− ε < x < 2 then 4−ε < x2 < 4

so (for x ∈ (√4− ε, 2)),
x2 − 4 > 4− ε− 4 = −ε.
Let δ = min{√4 + ε,

√
4− ε}.

1.7 Limits and

Loss-of-Significance

Errors

1. The limit is 1
4
.

x

1E78E66E64E62E60E0

y

0.5

0.4

0.3

0.2

0.1

0

We can rewrite the function as
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f(x) =

x(
√
4x2 + 1− 2x) ·

√
4x2 + 1 + 2x√
4x2 + 1 + 2x

=
x(4x2 + 1− 4x2)√
4x2 + 1 + 2x

=
x√

4x2 + 1 + 2x

to avoid loss-of-significance errors.

In the table below, the middle col-
umn contains values calculated using
f(x) = x(

√
4x2 + 1 − 2x), while the

third column contains values calcu-
lated using the rewritten f(x).

x old f(x) new f(x)
1 0.236068 0.236068
10 0.249844 0.249844
100 0.249998 0.249998
1000 0.250000 0.250000
10000 0.250000 0.250000
100000 0.249999 0.250000
1000000 0.250060 0.250000
10000000 0.260770 0.250000
100000000 0.000000 0.250000
1000000000 0.000000 0.250000

2. The limit is −1
4
.

y

0

-0.1

-0.2

-0.3

-0.4

-0.5

x

0E0-2E6-4E6-6E6-8E6-1E7

We can rewrite the function as

x(
√
4x2 + 1 + 2x)

(
√
4x2 + 1− 2x)

(
√
4x2 + 1− 2x)

=
x

(
√
4x2 + 1− 2x)

to avoid loss-of-significance errors.

3. The limit is 1.

x

1E148E136E134E132E130E0

y

1.1

1.05

1

0.95

0.9

We can rewrite the function as

√
x(
√
x+ 4−√x+ 2)·

√
x+ 4 +

√
x+ 2√

x+ 4 +
√
x+ 2

=

√
x[(x+ 4)− (x+ 2)]√
x+ 4 +

√
x+ 2

=
2
√
x√

x+ 4 +
√
x+ 2

to avoid loss-of-significance errors.

In the table below, the middle col-
umn contains values calculated using
f(x) =

√
x
¡√

x+ 4−√x+ 2¢, while
the third column contains values cal-
culated using the rewritten f(x).

x old f(x) new f(x)
1 0.504017 0.504017
10 0.877708 0.877708
100 0.985341 0.985341
1000 0.998503 0.998503
10000 0.999850 0.999850
100000 0.999985 0.999985
1000000 0.999998 0.999999
10000000 1.000000 1.000000
100000000 1.000000 1.000000
1000000000 1.000000 1.000000
10000000000 1.000000 1.000000
1E+11 0.999990 1.000000
1E+12 1.000008 1.000000
1E+13 0.999862 1.000000
1E+14 0.987202 1.000000
1E+15 0.942432 1.000000
1E+16 0.000000 1.000000
1E+17 0.000000 1.000000
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4. The limit is 4.

y

5

4

3

2

1

0

x

1000080006000400020000

We can rewrite the function as

x2(
√
x4 + 8− x2)

(
√
x4 + 8 + x2)

(
√
x4 + 8 + x2)

=
8x2

(
√
x4 + 8 + x2)

to avoid loss-of-significance errors.

5. The limit is 1.

y

1.1

1.05

1

0.95

0.9

x

1E78E66E64E62E60E0

We can multiply f(x) by
√
x2 + 4 +

√
x2 + 2√

x2 + 4 +
√
x2 + 2

to rewrite the function as

x[x2 + 4− (x2 + 2)]√
x2 + 4 +

√
x2 + 2

=
2x√

x2 + 4 +
√
x2 + 2

to avoid loss-of-significance errors.

In the table below, the middle col-
umn contains values calculated using
f(x) =

¡√
x2 + 4−√x2 + 2¢, while

the third column contains values cal-
culated using the rewritten f(x).

x old f(x) new f(x)
1 0.504017 0.504017
10 0.985341 0.985341
100 0.999850 0.999850
1000 0.999998 0.999999
10000 1.000000 1.000000
100000 1.000000 1.000000
1000000 1.000008 1.000000
10000000 0.987202 1.000000
100000000 0.000000 1.000000
1000000000 0.000000 1.000000

6. The limit is 0.

y

0.2

0.1

0

-0.1

-0.2

x

10000008000006000004000002000000

We can rewrite the function as

x(
√
x3 + 8− x3/2)

(
√
x3 + 8 + x3/2)

(
√
x3 + 8 + x3/2)

=
8x

(
√
x3 + 8 + x3/2)

to avoid loss-of-significance errors.

7. The limit is 1/6.

y

0.3

0.25

0.2

0.15

0.1

x

1E-65E-70E0-5E-7-1E-6

We can rewrite the function as

1− cos 2x
12x2

· 1 + cos 2x
1 + cos 2x
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=
sin2 2x

12x2(1 + cos 2x)

to avoid loss-of-significance errors.

In the table below, the middle col-
umn contains values calculated using

f(x) =
1− cos 2x
12x2

, while the third

column contains values calculated us-
ing the rewritten f(x). Note that
f(x) = f(−x) and so we get the same
values when x is negative (which al-
lows us to conjecture the two-sided
limit as x→ 0).

x old f(x) new f(x)
1 0.118012 0.118012
0.1 0.166112 0.166112
0.01 0.166661 0.166661
0.001 0.166667 0.166667
0.0001 0.166667 0.166667
0.00001 0.166667 0.166667
0.000001 0.166663 0.166667
0.0000001 0.166533 0.166667
0.00000001 0.185037 0.166667
0.000000001 0 0.166667
1E-10 0 0.166667

8. The limit is 1
2
.

x

1E-65E-70E0-5E-7-1E-6

y

0.8

0.7

0.6

0.5

0.4

0.3

0.2

We can rewrite the function as

(1− cosx)
x2

(1 + cosx)

(1 + cosx)

=
1− cos2 x

x2(1 + cosx)

=
sin2 x

x2(1 + cosx)

to avoid loss-of-significance errors.

9. The limit is 1
2
.

0.10.050-0.05-0.1

y

1

0.8

0.6

0.4

0.2

0

x

We can rewrite the function as

1− cosx3
x6

1 + cosx3

1 + cosx3

=
sin2(x3)

x6(1 + cosx3)

to avoid loss-of-significance errors.

In the table below, the middle col-
umn contains values calculated using
f(x) = 1−cosx3

x6
, while the third col-

umn contains values calculated using
the rewritten f(x). Note that f(x) =
f(−x) and so we get the same values
when x is negative (which allows us
to conjecture the two-sided limit as
x→ 0).

x old f(x) new f(x)
1 0.459698 0.459698
0.1 0.500000 0.500000
0.01 0.500044 0.500000
0.001 0.000000 0.500000
0.0001 0.000000 0.500000

10. The limit is 1
2
.
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0-0.5-1

y

0.6

0.55

0.5

0.45

0.4

x

10.5

We can rewrite the function as

(1− cosx4)
x8

(1 + cosx4)

(1 + cosx4)

=
1− cos2 x4

x8(1 + cosx4)

=
sin2 x4

x8(1 + cosx4)

to avoid loss-of-significance errors.

11. The limit is 2/3.

x

1E78E66E64E62E60E0

y

0.74

0.72

0.7

0.68

0.66

0.64

0.62

We can multiply f(x) by

1 =
g(x)

g(x)

where

g(x) = (x2+1)
2
3 + (x2+1)

1
3 (x2− 1) 13

+ (x2 − 1) 23
to rewrite the function as

2x4/3

g(x)

to avoid loss-of-significance errors.

In the table below, the middle col-
umn contains values calculated us-
ing f(x) = x4/3( 3

√
x2 + 1− 3

√
x2 − 1),

while the third column contains val-
ues calculated using the rewritten
f(x).

x old f(x) new f(x)
1 1.259921 1.259921
10 0.666679 0.666679
100 0.666667 0.666667
1000 0.666667 0.666667
10000 0.666668 0.666667
100000 0.666532 0.666667
1000000 0.63 0.666667
10000000 2.154435 0.666667
100000000 0.000000 0.666667
1000000000 0.000000 0.666667

12. The limit is 7/3.

y

2.4

2.3

2.2

2.1

x

1E158E146E144E142E140E0

We can multiply f(x) by

(x+ 4)
2
3 + (x+ 4)

1
3 (x− 3) 13 + (x− 3) 23

(x+ 4)
2
3 + (x+ 4)

1
3 (x− 3) 13 + (x− 3) 23

to rewrite the function as

7x2/3

(x+ 4)
2
3 + (x+ 4)

1
3 (x− 3) 13 + (x− 3) 23

to avoid loss-of-significance errors.

In the table below, the middle col-
umn contains values calculated using
f(x) = x2/3( 3

√
x+ 4− 3

√
x− 3), while

the third column contains values cal-
culated using the rewritten f(x).
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x old f(x) new f(x)
1 2.969897 1.259921
10 2.307850 2.307850
100 2.326111 2.326110
1000 2.332561 2.332561
10000 2.333256 2.333256
100000 2.333326 2.333326
1000000 2.333333 2.333333
10000000 2.333333 2.333333
100000000 2.333332 2.333333
1000000000 2.33337 2.333333
10000000000 2.333327 2.333333
1E+11 2.333253 2.333333
1E+12 2.3 2.333333
1E+13 2.320794 2.333333
1E+14 2.154435 2.333333
1E+15 0.000000 2.333333
1E+16 0.000000 2.333333

13. lim
x→1

x2 + x− 2
x− 1

= lim
x→1

(x+ 2)(x− 1)
x− 1

= lim
x→1
(x+ 2) = 3

lim
x→1

x2 + x− 2.01
x− 1 does not exist,

since when x is close to 1, the numer-
ator is close to −.01 (a small but non-
zero number) and the denominator is
close to 0.

14. lim
x→2

x− 2
x2 − 4

= lim
x→2

x− 2
(x− 2)(x+ 2) =

1

4

and lim
x→2

x− 2
x2 − 4.01 = 0.

15. f(1) = 0; g(1) = 0.00159265
f(10) = 0; g(10) = −0.0159259
f(100) = 0; g(100) = −0.158593
f(1000) = 0; g(1000) = −0.999761

16. For x = 105, the computation
procedes as follows: Compute 4 ×
(105)2 = 4 × 1010. Adding one does

not change the 10 digit mantissa (this
is the round-off error). Now comput-
ing the square root gives 2× 105, and
we subtract this same amount result-
ing in zero. This is multiplied by 105

yielding zero.

17. (1.000003− 1.000001)× 107 = 20
On a computer with a 6-digit
mantissa, the calculation would be
(1.00000− 1.00000)× 107 = 0.

18. The answer with a six-digit mantissa
is 0. The exact answer is 50.

Ch. 1 Review Exercises

1. The slope appears to be 2.

Second point msec
(3, 3) 3

(2.1, 0.21) 2.1
(2.01, 0.0201) 2.01
(1,−1) 1

(1.9,−0.19) 1.9
(1.99,−0.0199) 1.99

2. The slope appears to be 2.

Second point msec
(−0.2,−0.3894) 1.9471
(−0.1,−0.1987) 1.9867
(−0.01,−0.02) 2
(0.2, 0.3894) 1.9471
(0.1, 0.1987) 1.9876
(0.01, 0.02) 2

3. (a) For the x-values of our points here
we use (approximations of) 0, π

16
, π
8
,

3π
16
, and π

4
.

Left Right Length
(0, 0) (0.2, 0.2) 0.276

(0.2, 0.2) (0.39, 0.38) 0.272
(0.39, 0.38) (0.59, 0.56) 0.262
(0.59, 0.56) (0.785, 0.71) 0.248

Total 1.058
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(b) For the x-values of our points here
we use (approximations of) 0, π

32
, π
16
,

3π
32
, π
8
, 5π
32
, 3π
16
, 7π
32
, and π

4
.

Left Right Length
(0, 0) (0.1, 0.1) 0.139

(0.1, 0.1) (0.2, 0.2) 0.138
(0.2, 0.2) (0.29, 0.29) 0.137
(0.29, 0.29) (0.39, 0.38) 0.135
(0.39, 0.38) (0.49, 0.47) 0.132
(0.49, 0.47) (0.59, 0.56) 0.129
(0.59, 0.56) (0.69, 0.63) 0.126
(0.69, 0.63) (0.785, 0.71) 0.122

Total 1.058

4. (a)

Left Right Length
(0, 0) ( π

16
, 0.1951) 0.2768

( π
16
, 0.1951) (2π

16
, 0.3827) 0.2716

(2π
16
, 0.3827) (3π

16
, 0.5556) 0.2616

(3π
16
, 0.5556) (π

4
, 0.7071) 0.2480

Total 1.058

(b)

Left Right Length
(0, 0) ( π

32
, 0.0980) 0.1387

( π
32
, 0.0980) (2π

32
, 0.1951) 0.1381

(2π
32
, 0.1951) (3π

32
, 0.2903) 0.1368

(3π
32
, 0.2903) (4π

32
, 0.3827) 0.1348

(4π
32
, 0.3827) (5π

32
, 0.4714) 0.1323

(5π
32
, 0.4714) (6π

32
, 0.5556) 0.1293

(6π
32
, 0.5556) (7π

32
, 0.6344) 0.1259

(7π
32
, 0.6344) (π

4
, 0.7071) 0.1222

Total 1.0581

5. Let f(x) =
tan−1 x2

x2
.

x f(x)
0.1 0.999966669
0.01 0.999999997
0.001 1.000000000
0.0001 1.000000000
0.00001 1.000000000
0.000001 1.000000000

Note that f(x) = f(−x), so the re-
sults for negative x will be the same
as above. The limit appears to be 1.

6. lim
x→1

x2 − 1
lnx2

= 1.

7. Let f(x) =
x+ 2

|x+ 2| .

x f(x)
−1.9 1
−1.99 1
−1.999 1
−2.1 −1
−2.01 −1
−2.001 −1
lim
x→−2

x+ 2

|x+ 2| does not exist.

8. lim
x→0
(1 + 2x)1/x = e2 ≈ 7.389.

9. Let f(x) =

µ
1 +

2

x

¶x

.

x f(x)
10 6.1917
100 7.2446
1000 7.3743
10,000 7.3876

lim
x→∞

µ
1 +

2

x

¶x

= e2 ≈ 7.4

10. lim
x→∞

x2/x = 1.

11. (a) lim
x→−1−

f(x) = 1.

(b) lim
x→−1+

f(x) = −2.
(c) lim

x→−1
f(x) does not exist.

(d) lim
x→0

f(x) = 0.

12. (a) lim
x→1−

f(x) = 1.

(b) lim
x→1+

f(x) = 3.

(c) lim
x→1

f(x) does not exist.

(d) lim
x→2

f(x) = 2.
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13. x = −1, x = 1

14. One possible graph:

-1

x

2

2

1.5

-0.5

1

0.5

0-1-2
0

1

15. lim
x→2

x2 − x− 2
x2 − 4

= lim
x→2

(x− 2)(x+ 1)
(x+ 2)(x− 2)

= lim
x→2

x+ 1

x+ 2
=
3

4
.

16. lim
x→1

x2 − 1
x2 + x− 2

= lim
x→1

(x− 1)(x+ 1)
(x+ 2)(x− 1)

= lim
x→1

x+ 1

x+ 2
=
2

3
.

17. lim
x→0+

x2 + x√
x4 + 2x2

= lim
x→0+

x(x+ 1)

x
√
x2 + 2

= lim
x→0+

x+ 1√
x2 + 2

=
1√
2

but

lim
x→0−

x2 + x√
x4 + 2x2

= lim
x→0−

x(x+ 1)

(−x)√x2 + 2
= lim

x→0−
− x+ 1√

x2 + 2

= − 1√
2

Since the left and right limits are not

equal, lim
x→0

x2 + x√
x4 + 2x2

does not exist.

18. lim
x→0+

e− cotx = lim
x→∞

e−x = 0

but

lim
x→0−

e− cotx = lim
x→−∞

e−x =∞
Since the left and right limits are not
equal, lim

x→0
e− cotx does not exist.

19. lim
x→0
(2 + x) sin(1/x)

= lim
x→0

2 sin(1/x);

however, since lim
x→0

sin(1/x) does

not exist, it follows that lim
x→0
(2 +

x) sin(1/x) also does not exist.

20. lim
x→0

sinx2

x2
= 1.

21. lim
x→2

f(x) = 5.

22. lim
x→1−

f(x) = lim
x→1−

(2x+ 1) = 3

lim
x→1+

f(x) = lim
x→1+

(x2 + 1) = 2

lim
x→1

f(x) does not exist.

23. Multiply the function by

(1 + 2x)
2
3 + (1 + 2x)

1
3 + 1

(1 + 2x)
2
3 + (1 + 2x)

1
3 + 1

to get

lim
x→0

3
√
1 + 2x− 1

x

= lim
x→0

2

(1 + 2x)
2
3 + (1 + 2x)

1
3 + 1

=
2

3

24. lim
x→1

x− 1√
10− x− 3

lim
x→1

x− 1√
10− x− 3 ·

√
10− x+ 3√
10− x+ 3

lim
x→1

(x− 1)(√10− x+ 3)

10− x− 9
lim
x→1

(x− 1)(√10− x+ 3)

1− x
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lim
x→1
−(1− x)(

√
10− x+ 3)

1− x
lim
x→1
−(√10− x+ 3) = −6

25. lim
x→0

cot(x2) =∞

26. lim
x→1

tan−1
µ

x

x2 − 2x+ 1
¶

= lim
x→1

tan−1
µ

x

(x− 1)2
¶

= lim
x→∞

tan−1 x =
π

2

27. lim
x→∞

x2 − 4
3x2 + x+ 1

= lim
x→∞

x2
¡
1− 4

x2

¢
x2
¡
3 + 1

x
+ 1

x2

¢
= lim

x→∞
1− 4

x2

3 + 1
x
+ 1

x2

=
1

3

28. lim
x→∞

2x√
x2 + 4

1/x

1/x

= lim
x→∞

2p
1 + 4/x2

= 2

29. Since lim
x→π/2

tan2 x = +∞, it follows
that lim

x→π/2
e− tan

2 x = 0.

30. lim
x→−∞

e−x
2
= 0.

31. lim
x→∞

ln 2x = lim
x→∞

(ln 2 + lnx)

= ln 2 + lim
x→∞

lnx =∞

32. lim
x→0+

ln 3x = −∞

33. lim
x→−∞

2x

x2 + 3x− 5
= lim

x→−∞
2x

x2
¡
1 + 3

x
+ 5

x2

¢
= lim

x→−∞
2

x
¡
1 + 3

x
+ 5

x2

¢ = 0

34. lim
x→−2

2x

x2 + 3x+ 2

= lim
x→−2

2x

(x+ 2)(x+ 1)
does not exist. Approaches −∞ from
the left, and ∞ from the right.

35. Let u = − 1
3x
, so that

2

x
= −6u.

Then,

lim
x→0+

(1− 3x)2/x

= lim
u→−∞

µ
1 +

1

u

¶−6u
=

∙
lim

u→−∞

µ
1 +

1

u

¶u¸−6
= e−6

and

lim
x→0−

(1− 3x)2/x

= lim
u→∞

µ
1 +

1

u

¶−6u
=

∙
lim
u→∞

µ
1 +

1

u

¶u¸−6
= e−6

Thus, lim
x→0

(1− 3x)2/x = e−6.

36. lim
x→0+

2x− |x|
|3x|− 2x

= lim
x→0+

2x− x

3x− 2x
= lim

x→0+
x

x
= 1

but

lim
x→0−

2x− |x|
|3x|− 2x

lim
x→0−

2x− (−x)
−3x− 2x

lim
x→0−

3x

−5x = −
3

5

Thus the limit does not exit.

37. 0 ≤ x2

x2 + 1
< 1

⇒ −2 |x| ≤ 2x3

x2 + 1
< 2 |x|

lim
x→0
−2 |x| = 0; lim

x→0
2 |x| = 0

By the Squeeze Theorem,



92 CHAPTER 1 LIMITS AND CONTINUITY

lim
x→0

2x3

x2 + 1
= 0.

38. The first two rows of the following ta-
ble show that f(x) has a root in [1, 2].
In the following rows, we use the mid-
point of the previous interval as our
new x. When f(x) is positive, we use
the left half, and when f(x) is nega-
tive, we use the right half of the in-
terval.

x f(x)
1 −1
2 5
1.5 0.875
1.25 −0.2969
1.375 0.22246
1.3125 −0.0515
1.34375 0.0826

The zero is in the interval
(1.3125, 1.34375).

39. f(x) =
x− 1

x2 + 2x− 3 =
x− 1

(x+ 3)(x− 1)
has a non-removable discontinuity at
x = −3 and a removable discontinuity
at x = 1.

40. f(x) =
x+ 1

(x− 2)(x+ 2) is discontinu-
ous at x = ±2. Not removable.

41. lim
x→0−

f(x) = lim
x→0−

sinx = 0

lim
x→0+

f(x) = lim
x→0+

x2 = 0

lim
x→2−

f(x) = lim
x→2−

x2 = 4

lim
x→2+

f(x) = lim
x→2+

(4x− 3) = 5
f has a non-removable discontinuity
at x = 2.

42. f(x) = x cotx has discontinuities
wherever sinx is zero, namely x = kπ
for any integer k. The discontinu-
ity at x = 0 is removable because
lim
x→0

x cotx = 1. The other disconti-

nuities are not removable.

43. f(x) =
x+ 2

x2 − x− 6 =
x+ 2

(x− 3)(x+ 2)
continuous on (−∞,−2), (−2, 3) and
(3,∞).

44. f(x) is continuous wherever 3x− 4 >
0 i.e., on the interval (4

3
,∞).

45. f(x) = sin(1 + ex) is continuous on
the interval (−∞,∞).

46. f(x) is continuous wherever x2−4 ≥ 0
i.e., on the intervals (−∞,−2] and
[2,∞).

47. f(x) =
x+ 1

(x− 2)(x− 1) has vertical
asymptotes at x = 1 and x = 2.

lim
x→±∞

x+ 1

x2 − 3x+ 2
= lim

x→±∞
x
¡
1 + 1

x

¢
x2
¡
1− 3

x
+ 2

x2

¢
= lim

x→±∞
1 + 1

x

x
¡
1− 3

x
+ 2

x2

¢ = 0
So f(x) has a horizontal asymptote at
y = 0.

48. Vertical asymptote at x = 4. Hori-
zontal asymptote at y = 0. (Remov-
able discontinuuity at x = −2.)

49. f(x) =
x2

x2 − 1 =
x2

(x+ 1)(x− 1)
has vertical asymptotes at x = −1
and x = 1.

lim
x→±∞

x2

x2 − 1
= lim

x→±∞
x2

x2
¡
1− 1

x2

¢
= lim

x→±∞
1

1− 1
x2

=
1

1
= 1

So f(x) has a horizontal asymptote at
y = 1.
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50. Vertical asymptotes at x = 2 and
x = −1. Long division reveals the
slant asymptote y = x+ 1.

51. lim
x→0+

2e1/x =∞, so x = 0 is a vertical
asymptote.

lim
x→∞

2e1/x = 2, lim
x→−∞

2e1/x = 2,

so y = 2 is a horizontal asymptote.

52. Horizontal asymptotes at y = ±3π
2
.

53. f(x) has a vertical asymptote when
ex = 2, that is, x = ln 2.

lim
x→∞

3

ex − 2 = 0
lim

x→−∞
3

ex − 2 = −
3

2

so y = 0 and y = −3/2 are horizontal
asymptotes.

54. Vertical asymptote at x = 2. No hor-
izontal or slant asymptotes.

55. The limit is 1
4
.

x

1E-65E-70E0-5E-7-1E-6

y

0.3

0.25

0.2

0.15

0.1

We can rewrite the function as

1− cosx
2x2

=

µ
1− cosx
2x2

¶µ
1 + cosx

1 + cosx

¶
=

1− cos2 x
2x2(1 + cosx)

=
sin2 x

2x2(1 + cosx)

to avoid loss-of-significance errors.

In the table below, the middle col-
umn contains values calculated using
f(x) = 1−cosx

2x2
, while the third col-

umn contains values calculated using

the rewritten f(x). Note that f(x) =
f(−x) and so we get the same values
when x is negative (which allows us
to conjecture the two-sided limit as
x→ 0).

x old f(x) new f(x)
1 0.229849 0.229849
0.1 0.249792 0.249792
0.01 0.249998 0.249998
0.001 0.250000 0.250000
0.0001 0.250000 0.250000
0.00001 0.250000 0.250000
0.000001 0.250022 0.250000
0.0000001 0.249800 0.250000
0.00000001 0.000000 0.250000
0.000000001 0.000000 0.250000

56. The limit is 1
2
.

x

1E78E66E64E62E60E0

y

0.6

0.55

0.5

0.45

0.4

We can rewrite the function as

x(
√
x2 + 1− x)

(
√
x2 + 1 + x)

(
√
x2 + 1 + x)

=
x

(
√
x2 + 1 + x)

to avoid loss-of-significance errors.

57. The limit of θ0 as x approaches 0 is
66 radians per second, far faster than
the player can maintain focus. From
about 9 feet on in to the plate the
player can’t keep her eye on the ball.


