CHAPTER 13: SUPPLEMENTARY SOLUTIONS
 EDTA TITRATIONS

S13-1. $\quad \alpha_{Y} 4-=\frac{10^{-0.0} 10^{-1.5} \ldots 10^{-10.24}}{\left(10^{-6.62}\right)^{6}+\left(10^{-6.62}\right)^{5} 10^{-0.0+\ldots+10^{-0.0} 10^{-1.5} \ldots 10^{-10.24}}}=1.78 \times 10^{-4}$
S13-2. (a) $K_{\mathrm{f}}^{\prime}=\alpha_{\mathrm{Y}} 4-K_{\mathrm{f}}=0.36 \times 10^{10.69}=1.7_{6} \times 10^{10}$
(b) $\underset{x}{\mathrm{Ca}^{2+}}+\underset{x}{\mathrm{EDTA}} \rightleftharpoons \underset{0.050-x}{\mathrm{CaY}^{2-}}$

$$
\frac{0.050-x}{x^{2}}=1.7_{6} \times 10^{10} \Rightarrow\left[\mathrm{Ca}^{2+}\right]=1.7 \times 10^{-6} \mathrm{M}
$$

S13-3. $\frac{\left[\mathrm{MgY}^{-}\right]}{\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{Y}^{4-}\right]} \times \frac{\left[\mathrm{Na}^{+}\right]\left[\mathrm{Y}^{4-}\right]}{\left[\mathrm{NaY}^{3^{-}}\right]}=\frac{K_{\mathrm{f}}\left(\text { for } \mathrm{MgY}^{2-}\right)}{K_{\mathrm{f}}\left(\text { for } \mathrm{NaY}^{3-}\right)}=1.35 \times 10^{7}$

$$
\begin{equation*}
\left[\mathrm{Mg}^{2+}\right]=\frac{\left[\mathrm{Na}^{+}\right]}{1.35 \times 10^{7}}\left(\frac{\left[\mathrm{MgY}^{2^{-}}\right]}{\left[\mathrm{NaY}^{3^{-}}\right]}\right) \tag{1}
\end{equation*}
$$

We know that $\left[\mathrm{Mg}^{2+}\right]+\left[\mathrm{MgY}^{2-}\right]=0.0500 \mathrm{M}$ and $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{NaY}^{3^{-}}\right]=0.100 \mathrm{M}$. It seems like a good approximation to say that $\left[\mathrm{Na}^{+}\right]=0.100 \mathrm{M}$ and $\left[\mathrm{MgY}{ }^{2-}\right]=0.0500 \mathrm{M}$, since we expect almost all of the Na^{+}to be free and almost all of the Mg^{2+} to be bound to EDTA. If the ratio $\left[\mathrm{MgY}^{2-}\right] /\left[\mathrm{NaY}^{3-}\right]$ is called R, we can say that $\left[\mathrm{Mg}^{2+}\right] \approx 0.0500 / R$. (To see this, suppose $R=1000$. Then $1 / 1000$ of the Mg^{2+} will not be bound to EDTA and $\left[\mathrm{Mg}^{2+}\right]=$ ($0.0500 / 1000$.) In Equation 1 we can set $\left[\mathrm{Mg}^{2+}\right]=0.0500 / R$ and $\left[\mathrm{MgY}^{2^{-}}\right] /\left[\mathrm{NaY}^{3-}\right]=R$.

$$
\begin{equation*}
\frac{0.0500}{R}=\frac{\left[\mathrm{Na}^{+}\right]}{1.35 \times 10^{7}} R \tag{2}
\end{equation*}
$$

Putting the value $\left[\mathrm{Na}^{+}\right]=0.100$ into Equation 2 gives $R=2600$. This large value of R confirms the approximations that $\left[\mathrm{MgY}^{2}\right] \approx 0.0500 \mathrm{M}$ and $\left[\mathrm{NaY}^{3}\right] \approx 0.100 \mathrm{M}$.

S13-4. (a) $\left(V_{\mathrm{e}}\right)(0.100 \mathrm{M})=(100.0 \mathrm{~mL})(0.0500 \mathrm{M}) \Rightarrow V_{\mathrm{e}}=50.0 \mathrm{~mL}$
(b) $[\mathrm{EDTA}]=\left(\frac{1}{2}\right) \quad(0.0500 \mathrm{M}) \quad\left(\frac{100}{125}\right) \quad=0.0200 \mathrm{M}$ $\begin{array}{cl}\text { fraction } \\ \text { remaining } & \begin{array}{c}\text { original } \\ \text { concentration }\end{array}\end{array} \begin{aligned} & \text { dilution } \\ & \text { factor }\end{aligned}$
(c) 0.36 (Table 13-1)
(d) $K_{\mathrm{f}}^{\prime}=(0.36)\left(10^{8.00}\right)=3.6 \times 10^{7}$
(e) $\left[\mathrm{MY}^{n-4}\right]=(0.100 \mathrm{M})\left(\frac{100}{150}\right)=0.0667 \mathrm{M}$

$$
\frac{\left[\mathrm{MY}^{n-4}\right]}{\left[\mathrm{M}^{n+}\right][\mathrm{EDTA}]}=\frac{0.0667-x}{x^{2}}=3.6 \times 10^{7} \Rightarrow x=\left[\mathrm{M}^{n+}\right]=4.3 \times 10^{-5} \mathrm{M}
$$

(f) $\left[\mathrm{M}^{n+}\right]=(0.100 \mathrm{M})\left(\frac{5.0}{155.0}\right)=3.23 \times 10^{-3} \mathrm{M}$

$$
\begin{aligned}
& {\left[\mathrm{MY}^{n-4}\right]=(0.0500 \mathrm{M})\left(\frac{100.0}{155.0}\right)=3.23 \times 10^{-2} \mathrm{M}} \\
& \frac{\left[\mathrm{MY}^{n-4}\right]}{\left[\mathrm{M}^{n+}\right][\mathrm{EDTA}]}=\frac{\left(3.23 \times 10^{-2}\right)}{\left(3.23 \times 10^{-3}\right)[\text { EDTA }]}=3.6 \times 10^{7} \Rightarrow[\text { EDTA }]=2.8 \times 10^{-7} \mathrm{M}
\end{aligned}
$$

S13-5. $\mathrm{Fe}^{2+}+\mathrm{EDTA} \rightleftharpoons \mathrm{FeY}^{2-} \quad \alpha_{\mathrm{Y}} 4-K_{\mathrm{f}}=4.8 \times 10^{9}$

$$
V_{\mathrm{e}}=(25.00)\left(\frac{0.02026 \mathrm{M}}{0.03855 \mathrm{M}}\right)=13.14 \mathrm{~mL}
$$

(a) $\underline{12.00 \mathrm{~mL}}:[E D T A]=\left(\frac{13.14-12.00}{13.14}\right)(0.02026 \mathrm{M})\left(\frac{25.00}{37.00}\right)=1.19 \times 10^{-3} \mathrm{M}$

$$
\left[\mathrm{FeY}^{2-}\right]=\left(\frac{12.00}{37.00}\right)(0.03855 \mathrm{M})=1.25 \times 10^{-2} \mathrm{M}
$$

$$
\left[\mathrm{Fe}^{2+}\right]=\frac{\left[\mathrm{FeY}^{2-}\right]}{[\mathrm{EDTA}] K_{\mathrm{f}}^{\prime}}=2.2 \times 10^{-9} \mathrm{M} \Rightarrow \mathrm{pFe}^{2+}=8.66
$$

(b) $\underline{V}_{\mathrm{e}}$: Formal concentration of FeY^{2-} is $\left(\frac{25.00}{38.14}\right)(0.02026 \mathrm{M})=1.33 \times 10^{-2} \mathrm{M}$

$$
\begin{aligned}
& \mathrm{Fe}^{2+}+\underset{x}{\mathrm{EDTA}} \rightleftharpoons \underset{1.33 \times 10^{-2}-x}{\mathrm{FeY}^{2-}} \\
& \frac{1.33 \times 10^{-2} x}{x^{2}}=\alpha \mathrm{Y}^{4}-K_{\mathrm{f}} \Rightarrow x=1.66 \times 10^{-6} \mathrm{M} \Rightarrow \mathrm{pFe}^{2+}=5.78 \\
& \text { (c) } \underline{14.00 \mathrm{~mL}}:\left[\mathrm{Fe}^{2+}\right]=\left(\frac{14.0-13.14}{39.00}\right)(0.03855 \mathrm{M})=8.50 \times 10^{-4} \mathrm{M} \Rightarrow \mathrm{pFe}^{2+}=3.07
\end{aligned}
$$

S13-6. $\quad(50.0 \mathrm{~mL})(0.0111 \mathrm{M})=\left(V_{\mathrm{e}}\right)(0.0222 \mathrm{M}) \Rightarrow V_{\mathrm{e}}=25.0 \mathrm{~mL}$
$\underline{0 \mathrm{~mL}}: \mathrm{pY}^{3+}=-\log (0.0111)=1.95$
$\underline{10.0 \mathrm{~mL}}:\left[\mathrm{Y}^{3+}\right]=\left(\frac{25.0-10.0}{25.0}\right)(0.0111 \mathrm{M})\left(\frac{50.0}{60.0}\right)=0.00555 \mathrm{M} \Rightarrow \mathrm{pY}^{3+}=2.26$
$\underline{20.0 \mathrm{~mL}}:\left[\mathrm{Y}^{3+}\right]=\left(\frac{25.0-20.0}{25.0}\right)(0.0111 \mathrm{M})\left(\frac{50.0}{70.0}\right)=0.00159 \mathrm{M} \Rightarrow \mathrm{pY}^{3+}=2.80$
$\underline{24.0 \mathrm{~mL}}:\left[\mathrm{Y}^{3+}\right]=\left(\frac{25.0-24.0}{25.0}\right)(0.0111 \mathrm{M})\left(\frac{50.0}{74.0}\right)=3.00 \times 10^{-4} \mathrm{M} \Rightarrow \mathrm{pY}^{3+}=3.52$
$\underline{24.9 \mathrm{~mL}}:\left[\mathrm{Y}^{3+}\right]=\left(\frac{25.0-24.9}{25.0}\right)(0.0111 \mathrm{M})\left(\frac{50.0}{74.9}\right)=2.96 \times 10^{-5} \mathrm{M}\left\ulcorner\mathrm{pY}^{3+}=4.53\right.$

S13-7. $\mathrm{Cd}^{2+}+\mathrm{Y}^{4-}=\mathrm{CdY}^{2-} \quad K_{\mathrm{f}}=10^{16.46}=2.9 \times 10^{16}$
$\alpha_{Y 4}=0.98$ at pH 12.00 (Table 13-1)
For Cd^{2+} and NH_{3}, Appendix I gives $K_{1}=10^{2.51}, K_{2}=10^{1.96}$,

$$
K_{3}=10^{1.30} \text { and } K_{4}=10^{0.79}
$$

This means $\beta_{1}=K_{1}=3.2 \times 10^{2}, \beta_{2}=K_{1} K_{2}=3.0 \times 10^{4}$,

$$
\beta_{3}=K_{1} K_{2} K_{3}=5.9 \times 10^{5} \text { and } \beta_{4}=K_{1} K_{2} K_{3} K_{4}=3.6 \times 10^{6}
$$

$$
\alpha_{\mathrm{Cd} 2+}=\frac{1}{1+\beta_{1}(0.200)+\beta_{2}(0.200)^{2}+\beta_{3}(0.200)^{3}+\beta_{4}(0.200)^{4}}=8.5 \times 10^{-5}
$$

$K_{\mathrm{f}}^{\prime}=\alpha_{\mathrm{Y}} 4-K_{\mathrm{f}}=2.8 \times 10^{16}$
$K_{\mathrm{f}}^{\prime \prime}=\alpha_{\mathrm{Y}} 4-\alpha_{\mathrm{Cd}^{2}+} K_{\mathrm{f}}=2.4 \times 10^{12}$
Equivalence point $=5.00 \mathrm{~mL}$
(a) At 0 mL , the total concentration of cadmium is $\mathrm{Cd}^{2+}=0.00100 \mathrm{M}$ and

$$
\left[\mathrm{Cd}^{2+}\right]=\alpha_{\mathrm{Cd}^{2+}} \mathrm{C}_{\mathrm{Cd} 2+}=8.5 \times 10^{-8} \mathrm{M} \Rightarrow \mathrm{pCd}^{2+}=7.07
$$

$$
\begin{aligned}
& \underline{25.0 \mathrm{~mL}}: \quad \mathrm{Y}^{3+}+\mathrm{EDTA} \rightleftharpoons \mathrm{Y}(\text { EDTA })^{-} \quad K_{\mathrm{f}}^{\prime}=4.6 \times 10^{11} \\
& x \quad x \quad \frac{50.0}{75.0}(0.0111)-x \\
& \frac{0.00740-x}{x^{2}}=4.6 \times 10^{11} \Rightarrow x=1.3 \times 10^{-7} \Rightarrow \mathrm{pY}^{3+}=6.90 \\
& \underline{25.1 \mathrm{~mL}}:[E D T A]=\left(\frac{0.1}{75.1}\right)(0.0222 \mathrm{M})=2.96 \times 10^{-5} \mathrm{M} \\
& {\left[\mathrm{Y}(\text { EDTA })^{-}\right]=\left(\frac{50.0}{75.1}\right)(0.0111 \mathrm{M})=0.00739 \mathrm{M}} \\
& {\left[\mathrm{Y}^{3+}\right]=\frac{\left[\mathrm{Y}(\mathrm{EDTA})^{-}\right]}{[\mathrm{EDTA}] K_{\mathrm{f}}^{\prime}}=5.4 \times 10^{-10} \mathrm{M} \Rightarrow \mathrm{pY}^{3+}=9.27} \\
& \underline{26.0 \mathrm{~mL}}:[\mathrm{EDTA}]=\left(\frac{1.0}{76.0}\right)(0.0222 \mathrm{M})=2.92 \times 10^{-4} \mathrm{M} \\
& {\left[\mathrm{Y}(\text { EDTA })^{-}\right]=\left(\frac{50.0}{76.0}\right)(0.0111 \mathrm{M})=0.00730 \mathrm{M}} \\
& {\left[\mathrm{Y}^{3+}\right]=5.4 \times 10^{-11} \mathrm{M} \Rightarrow \mathrm{pY}^{3+}=10.26} \\
& 30.0 \mathrm{~mL}:[E D T A]=\left(\frac{5.0}{80.0}\right)(0.0222 \mathrm{M})=1.39 \times 10^{-3} \mathrm{M} \\
& {\left[\mathrm{Y}(\text { EDTA })^{-}\right]=\left(\frac{50.0}{80.0}\right)(0.0111 \mathrm{M})=6.94 \times 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{Y}^{3+}\right]=1.09 \times 10^{-11} \mathrm{M} \Rightarrow \mathrm{pY}^{3+}=10.96}
\end{aligned}
$$

(b) At $1.00 \mathrm{~mL}, \mathrm{C}_{\mathrm{Cd}^{2+}}=\left(\frac{4.00}{5.00}\right)(0.00100 \mathrm{M})\left(\frac{10.00}{11.00}\right)=7.27 \times 10^{-4} \mathrm{M}$ $\begin{array}{cc}\text { fraction original } & \text { dilution } \\ \text { remaining } & \text { concentration } \\ \text { factor }\end{array}$

$$
\left[\mathrm{Cd}^{2+}\right]=\alpha_{\mathrm{Cd}^{2+}} \mathrm{C}_{\mathrm{Cd}^{2+}}=6.2 \times 10^{-8} \mathrm{M} \Rightarrow \mathrm{pCd}^{2+}=7.21
$$

(c) At $4.90 \mathrm{~mL}, \mathrm{C}_{\mathrm{Cd}^{2+}}=\left(\frac{0.10}{5.00}\right)(0.00100 \mathrm{M})\left(\frac{10.00}{14.90}\right)=1.34 \times 10^{-5} \mathrm{M}$

$$
\left[\mathrm{Cd}^{2+}\right]=\alpha_{\mathrm{Cd}^{2+}} \mathrm{C}_{\mathrm{Cd}^{2+}}=1.1 \times 10^{-9} \mathrm{M} \Rightarrow \mathrm{pCd}^{2+}=8.94
$$

(d) At the equivalence point, we can write

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{Cd}^{2+}}+\mathrm{EDTA} \rightleftharpoons \mathrm{CdY}^{2-} \\
& x \quad x \quad\left(\frac{10.00}{15.00}\right)(0.00100)-x \\
& \frac{0.000667-x}{x^{2}}=2.4 \times 10^{12} \Rightarrow x=\mathrm{C}_{\mathrm{Cd}^{2+}}=1.7 \times 10^{-8} \mathrm{M} \\
& {\left[\mathrm{Cd}^{2+}\right]=\alpha_{\mathrm{Cd}^{2+}} \mathrm{C}_{\mathrm{Cd}^{2+}}=1.4 \times 10^{-12} \mathrm{M} \Rightarrow \mathrm{pCd}^{2+}=11.85}
\end{aligned}
$$

(e) Past the equivalence point at 5.10 mL , we can say

$$
\begin{aligned}
& {[\text { EDTA }]=\left(\frac{0.10}{15.10}\right)(0.00200 \mathrm{M})=1.3 \times 10^{-5} \mathrm{M} } \\
& \begin{array}{c}
\text { dilution } \\
\text { factor }
\end{array} \begin{array}{c}
\text { original } \\
\text { concentration }
\end{array} \\
& {\left[\mathrm{CdY}^{2-}\right]=\left(\frac{10.00}{15.10}\right)(0.00100 \mathrm{M})=6.6 \times 10^{-4} \mathrm{M} } \\
& K_{\mathrm{f}}^{\prime}= \frac{\left[\mathrm{CdY}^{2-}\right]}{\left[\mathrm{Cd}^{2+}\right][\mathrm{EDTA}]}=\frac{\left(6.6 \times 10^{-4}\right)}{\left[\mathrm{Cd}^{2+}\right]\left(1.3 \times 10^{-5}\right)} \\
& \Rightarrow {\left[\mathrm{Cd}^{2+}\right]=1.8 \times 10^{-15} \mathrm{M} \Rightarrow \mathrm{pCd}^{2+}=14.74 }
\end{aligned}
$$

(f) At 6.00 mL ,

$$
\begin{aligned}
& {[\text { EDTA }]=\left(\frac{1.00}{16.00}\right)(0.00200 \mathrm{M})=1.2 \times 10^{-4} \mathrm{M}} \\
& {\left[\mathrm{CdY}^{2-}\right]=\left(\frac{10.00}{16.00}\right)(0.00100 \mathrm{M})=6.2 \times 10^{-4} \mathrm{M}} \\
& K_{\mathrm{f}}^{\prime}=\frac{\left[\mathrm{CdY}^{2-}\right]}{\left[\mathrm{Cd}^{2+}\right][\text { EDTA }]} \Rightarrow\left[\mathrm{Cd}^{2+}\right]=1.8 \times 10^{-16} \mathrm{M} \Rightarrow \mathrm{pCd}^{2+}=15.73
\end{aligned}
$$

S13-8. (a) Equations 1 and 2 can be represented as

For noncooperative binding, \square $=\triangle=\square=\triangle$ at 50% saturation. Calling each concentration C gives $K_{1}=\frac{(C+C)}{(C)[\mathrm{M}]}$ and

$$
K_{2}=\frac{(C)}{(C+C)[\mathrm{M}]} \text {, or } \frac{K_{1}}{K_{2}}=\frac{\frac{2 C}{C \mathrm{M}}}{\frac{C}{2 C \mathrm{M}}}=4
$$

S13-9. $\quad \mathrm{H}_{3} \mathrm{In}^{3-}$, yellow, red, violet \rightarrow red
S13-10. $\left[\mathrm{Fe}^{3+}\right]=\frac{\text { mmol EDTA }-\mathrm{mmol} \mathrm{Mg}}{}{ }^{2+}=\frac{0.367-0.109}{25.00 \mathrm{~mL}}=0.0103 \mathrm{M}$
S13-11. Hardness $=3.2 \mathrm{mM}+1.1 \mathrm{mM}=4.3 \mathrm{mM}=430 \mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}$, since the formula mass of CaCO_{3} is $100.09 \mathrm{~g} / \mathrm{mol}$.

S13-12. Concentration of Ni^{2+} in the standard solution is $\left(\frac{39.3}{30.0}\right)(0.0130 \mathrm{M})=0.0170 \mathrm{M}$.
The quantity of Ni^{2+} in 25.0 mL is $(25.0 \mathrm{~mL})(0.0170 \mathrm{M})=0.425 \mathrm{mmol}$.
Excess Ni equals $(10.1 \mathrm{~mL})(0.0130 \mathrm{M})=0.131 \mathrm{mmol}$.
Therefore $0.425-0.131=0.294 \mathrm{mmol}$ of Ni^{2+} reacted with CN^{-}.
Since each mole of Ni^{2+} reacts with 4 moles of CN^{-}, there must have been $4(0.294)=1.176 \mathrm{mmol}$ of CN^{-}in 12.7 mL .
$\left[\mathrm{CN}^{-}\right]=1.176 \mathrm{mmol} / 12.7 \mathrm{~mL}=0.0926 \mathrm{M}$.
S13-13. Total EDTA used $=(39.98 \mathrm{~mL})(0.04500 \mathrm{M})=1.7991 \mathrm{mmol}$
-mmol of $\mathrm{Mg}^{2+}=(10.26 \mathrm{~mL})(0.02065 \mathrm{M})=0.2119 \mathrm{mmol}$

-mmol of $\mathrm{Zn}^{2+}=(15.47 \mathrm{~mL})(0.02065 \mathrm{M})$	$=0.3195 \mathrm{mmol}$
mmol of Mn^{2+}	$=1.2677 \mathrm{mmol}$

mg of each metal : $\mathrm{Mn}^{2+}-69.64 ; \mathrm{Mg}^{2+}-5.150 ; \mathrm{Zn}^{2+}-20.89$

S13-14. $\left[\mathrm{Bi}^{3+}\right]=\frac{\text { mmol EDTA in step } 1}{25.00 \mathrm{~mL}}=\frac{0.1715 \mathrm{mmol}}{25.00 \mathrm{~mL}}=6.861 \mathrm{mM}$
$\left[\mathrm{Ti}^{4+}\right]=\frac{\mathrm{mmol} \mathrm{Zn}}{}{ }^{2+}$ in step 3$-25.00 \mathrm{~mL} \quad=\frac{0.05385 \mathrm{mmol}}{25.00 \mathrm{~mL}}=2.153 \mathrm{mM}$
$\left[\mathrm{Al}^{3+}\right]=\frac{\mathrm{mmol} \mathrm{Zn}}{}{ }^{2+}$ in step $4 / 20.00 \mathrm{~mL} \quad \frac{0.3307 \mathrm{mmol}}{25.00 \mathrm{~mL}}=13.23 \mathrm{mM}$
Color change in steps 3 and 4: yellow \rightarrow red
S13-15. (no solution in manual)
S13-16. Pyrocatechol violet: mean $=2.029_{5} \quad$ standard deviation $=0.020_{4}$
Xylenol orange: \quad mean $=2.047_{4} \quad$ standard deviation $=0.011_{5}$
$s_{\text {pooled }}=\sqrt{\frac{0.0204^{2}(6-1)+0.0115^{2}(5-1)}{6+5-2}}=0.017_{0}$
$t=\frac{2.047_{4}-2.029_{5}}{0.017_{0}} \sqrt{\frac{6 \cdot 5}{6+5}}$

$$
=1.74<2.262 \text { (listed for } 95 \% \text { confidence and } 9 \text { degrees of freedom). }
$$

The results are not significantly different.

S13-17. (a) $z=\frac{x-\mu}{\sigma}$. At $x=0.1700, z=\frac{0.1700-0.1664}{0.0028}=1.286$. At $x=0.1750, z=\frac{0.1750-0.1664}{0.0028}=3.071$.
Now we interpolate in a table of areas under a Gaussian curve.
From $z=1.200$ to $z=1.286$, the area is

$$
\begin{aligned}
& \text { area between } z=1.200 \\
& \quad \text { and } z=1.286
\end{aligned}=\left(\frac{1.286-1.200}{1.300-1.200}\right)(0.4032-0.3849)=0.0157
$$

Fraction of Area between interval between $\quad z=1.2$ and $z=1.3$ $z=1.2$ and $z=1.3$

Area from mean $(z=0)$ to $z=1.286$ is $0.3849+0.0157=0.4006$
Similarly, the area from the mean to $z=3.071$ is 0.4989 .
Area from $z=1.286$ to $z=3.071$ is $0.4989-0.4006=0.0983$
9.8% of the measurements are expected for the range 0.1700 to 0.1750 M .
(b) The area from the mean to 0.1750 M was found to be 0.4989 in the part (a). The area beyond 0.1750 M is $0.5000-0.4989=0.0011$. That is, 0.11% of measurements are expected above 0.1750 M .
(c) The warning line needs to be set at $\mu \pm 2 \sigma / \sqrt{n}$ and the action line is set at $\mu \pm 3 \sigma / \sqrt{n}$, where $n=4$ is the number of replicate measurements made at each monitoring time.
Using $\mu=0.1664 \mathrm{M}$ and $\sigma=0.0028 \mathrm{M}$, the warning and action lines should be set at warning lines: $0.1664 \pm 2(0.0028) / \sqrt{4}=0.1692$ and 0.1636 M action lines: $\quad 0.1664 \pm 3(0.0028) / \sqrt{4}=0.1706$ and 0.1622 M

S13-18. (a) When polymer is added to the waste, it binds selected cations:

The trick is to choose a polymer and the right conditions to bind the toxic metal ion that you want to remove. When the waste + polymer solution is passed through an ultrafiltration membrane, solvent and other solutes not attached to the polymer pass through the membrane. The small volume of solution that is retained by the membrane contains the toxic cation bound to polymer. To make the process efficient, it is necessary to release the polymer from the cation and to recycle the polymer.

S14-1. (a) $\mathrm{TeO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightleftharpoons \mathrm{Te}(s)+6 \mathrm{OH}^{-}$ Oxidant
$\mathrm{S}_{2} \mathrm{O}_{4}^{2-}+4 \mathrm{OH}^{-} \rightleftharpoons 2 \mathrm{SO}_{3}^{2-}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
Reductant
(b) $(1.00 \mathrm{~g} \mathrm{Te}) /(127.60 \mathrm{~g} / \mathrm{mol})=7.84 \mathrm{mmol}$, which requires $4 \times 7.84=31.3 \mathrm{mmol}$ of electrons $\left(3.13 \times 10^{-2} \mathrm{~mol} \mathrm{e}^{-}\right)\left(9.649 \times 10^{4} \mathrm{C} / \mathrm{mol}\right)=3.02 \times 10^{3} \mathrm{C}$
(c) Current $=\left(3.02 \times 10^{3} \mathrm{C}\right) /(3600 \mathrm{~s})=0.840 \mathrm{~A}$

S14-2. (a) oxidation: $\mathrm{Fe}(\mathrm{CN})_{6}^{4-} \rightleftharpoons \mathrm{Fe}(\mathrm{CN})_{6}^{3-}+\mathrm{e}^{-}$ reduction: $\mathrm{Ag}(\mathrm{CN})_{2}^{-}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(s)+2 \mathrm{CN}^{-}$

(b) oxidation: $2 \mathrm{Hg}(l)+2 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)+2 \mathrm{e}^{-}$
reduction: $\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(s)$

S14-3. The calculations below show that the hydrogen-oxygen fuel cell produces the most electricity per kg of reactants and the lead-acid battery produces the least.
$1 \mathrm{~A} \cdot \mathrm{~h}=\frac{(1 \mathrm{C} / \mathrm{s})(3600 \mathrm{~s} / \mathrm{h})(1 \mathrm{~h})}{9.649 \times 10^{4} \mathrm{C} / \mathrm{mole}^{-}}=0.03731 \mathrm{~mol} \mathrm{e} \mathrm{e}^{-}$
(a) In the lead-acid battery, each mole of $\mathrm{Pb}(s)$ transfers 2 mol of e^{-}to each mol of PbO_{2} to make PbSO_{4}. Therefore 642.6 g of reactants transfers 2 mol of e^{-}.
$\left.\left.\frac{\text { ampere } \cdot \text { hour }}{\text { kilogram of reactants }}=\frac{(2 \mathrm{~mol} \mathrm{e}}{}{ }^{-}\right) /(0.03731 \mathrm{~mol} \mathrm{e}-/ \mathrm{A} \cdot \mathrm{h})\right)=83.42 \frac{\mathrm{~A} \cdot \mathrm{~h}}{\mathrm{~kg}}$
(b) One mol of Zn transfers 2 mol of e^{-}.

$$
\left.\left.\frac{\left(2 \mathrm{~mol} \mathrm{e}^{-}\right) /(0.03731 \mathrm{~mol} \mathrm{e}}{}-/ \mathrm{A} \cdot \mathrm{~h}\right)\right)=154.8 \frac{\mathrm{~A} \cdot \mathrm{~h}}{\mathrm{~kg}}
$$

(c) One mol of $\mathrm{Cd}(\mathrm{OH})_{2}$ receives 2 mol of e^{-}.

$$
\left.\left.\frac{\left(2 \mathrm{~mol} \mathrm{e}^{-}\right) /(0.03731 \mathrm{~mol} \mathrm{e}}{} \mathrm{e}^{-} / \mathrm{A} \cdot \mathrm{~h}\right)\right)=161.5 \frac{\mathrm{~A} \cdot \mathrm{~h}}{\mathrm{~kg}}
$$

(d Two mol of Al transfer 6 mol of $\left.\mathrm{e}^{-} . \quad \frac{\left(6 \mathrm{~mol} \mathrm{e}^{-}\right) /(0.03731 \mathrm{~mol} \mathrm{e}}{}{ }^{-} / \mathrm{A} \cdot \mathrm{h}\right), ~ 0.372525 \mathrm{~kg} \quad=431.7 \frac{\mathrm{~A} \cdot \mathrm{~h}}{\mathrm{~kg}}$
(e) One mol of O_{2} receives 4 mol of $\left.\mathrm{e}^{-} . \frac{\left(4 \mathrm{~mol} \mathrm{e}^{-}\right) /(0.03731 \mathrm{~mol} \mathrm{e}}{}-/ \mathrm{A} \cdot \mathrm{h}\right), ~ 0.036031 \mathrm{~kg} \quad=2975 \frac{\mathrm{~A} \cdot \mathrm{~h}}{\mathrm{~kg}}$

S14-4. If we organize the half-reactions as in Table $14-1, \mathrm{Cr}^{2+}$ is the product in the reaction with the most negative reduction potential. Therefore it is the strongest reducing agent. The half-reaction is $\mathrm{Cr}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cr}^{2+}\left(E^{\circ}=-0.42 \mathrm{~V}\right)$.

S14-5. Become stronger : $\mathrm{Cl}_{2}, \mathrm{Al}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \quad$ Unchanged : MnO_{4}^{2-}
S14-6. (a) right half-cell: $\mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Hg}(l)+2 \mathrm{Cl}^{-} \quad E_{+}^{\circ}=0.268 \mathrm{~V}$ left half-cell: $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(g) \quad E_{-}^{\circ}=0 \mathrm{~V}$
right half-cell: $E_{+}=\left\{0.268-\frac{0.05916}{2} \log \left[\mathrm{Cl}^{-}\right]^{2}\right\}$

$$
=\left\{0.268-\frac{0.05916}{2} \log [0.200]^{2}\right\}=0.309_{4} \mathrm{~V}
$$

left half-cell: $\quad E_{-}=\left\{0-\frac{0.05916}{2} \log \frac{P_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}}\right\}$

$$
=\left\{-\frac{0.05916}{2} \log \frac{0.100}{\left[10^{-2.54}\right]^{2}}\right\}=-0.120_{7} \mathrm{~V}
$$

(b) $E=E_{+}-E_{-}=0.309_{4}-\left(-0.120_{7}\right)=0.430 \mathrm{~V}$. Since the voltage is positive, electrons flow from the left-hand electrode to the right-hand electrode. Reduction occurs at the right-hand electrode.

S14-7. (a) $\operatorname{Pt}(s)\left|\mathrm{Cr}^{2+}(a q), \mathrm{Cr}^{3+}(a q)\right|\left|\mathrm{Tl}^{+}(a q)\right| \mathrm{Tl}(s)$
(b) right half-cell: $\quad \mathrm{Tl}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Tl}(s) \quad E_{+}^{\circ}=-0.336 \mathrm{~V}$
left half-cell: $\quad \mathrm{Cr}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cr}^{2+} \quad E_{-}^{\circ}=-0.42 \mathrm{~V}$
right half-cell: $E_{+}=\left\{-0.336-0.05916 \log \frac{1}{\left[\mathrm{Tl}^{+}\right]}\right\}=-0.336 \mathrm{~V}$
left half-cell: $\quad E_{-}=\left\{-0.42-0.05916 \log \frac{\left[\mathrm{Cr}^{2+}\right]}{\left[\mathrm{Cr}^{3+}\right]}\right\}=-0.42 \mathrm{~V}$
$E=E_{+}-E_{-}=-0.336-(-0.42)=0.08_{4} \mathrm{~V}$.
(c) Since the voltage is positive, electrons flow from Pt to Tl and the reaction is $\mathrm{Tl}^{+}+\mathrm{Cr}^{2+} \rightleftharpoons \mathrm{Tl}(s)+\mathrm{Cr}^{3+}$
(d) Pt is the anode, since Cr^{2+} is oxidized.

S14-8. Balanced reaction: $\mathrm{HNO}_{2}+\mathrm{e}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{lrl}
\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2} & \Delta G_{1}^{\circ} & =-1 \mathrm{~F}(0.773) \\
\mathrm{NO}_{2} \rightarrow \mathrm{HNO}_{2} & \Delta G_{2}^{\circ} & =-1 F(1.108) \\
\mathrm{HNO}_{2} \rightarrow \mathrm{NO} & \Delta G_{3}^{\circ} & =-1 F E_{3}^{\circ} \\
\hline \mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO} & \Delta G_{4}^{\circ} & =-3 F(0.955) \\
F E_{3}^{\circ}=3 F(0.955)-F(0.773)-F(1.108) & E_{3}^{\circ}=0.984 \mathrm{~V}
\end{array}
$$

S14-9.
(a) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}^{+}$
${ }^{-} \mathrm{Cu}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(s)$

$$
\Delta G^{\circ}=-1 F E^{\circ}=34.4 \mathrm{~kJ}
$$ $E_{+}^{\circ}=0.161 \mathrm{~V}$

$$
\begin{aligned}
& E_{-}^{\circ}=0.518 \mathrm{~V} \\
& E^{\circ}=-0.357 \mathrm{~V}
\end{aligned}
$$

$$
K=10^{1 E^{\circ} / 0.05916}=9.2 \times 10^{-7}
$$

(b)

$$
\begin{array}{cl}
2 \mathrm{~F}_{2}+4 \mathrm{e}^{-} \rightleftharpoons 4 \mathrm{~F}^{-} & E_{+}^{\circ}=2.890 \mathrm{~V} \\
{ }^{-} \mathrm{F}_{2} \mathrm{O}+2 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+2 \mathrm{~F}^{-} & E_{-}^{\circ}=2.168 \mathrm{~V} \\
\hline 2 \mathrm{~F}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{~F}_{2} \mathrm{O}+2 \mathrm{~F}^{-}+2 \mathrm{H}^{+} & E^{\circ}=0.722 \mathrm{~V} \\
\Delta G^{\circ}=-4 F E^{\circ}=-279 \mathrm{~kJ} \quad K=10^{4} E^{\circ} / 0.059 & 16=7 \times 10^{48}
\end{array}
$$

S14-10.
\($$
\begin{array}{ll}\text { (a) } 2 \mathrm{IO}_{3}^{-}+\mathrm{I}^{-}+12 \mathrm{H}^{+}+10 \mathrm{e}^{-} \rightleftharpoons \mathrm{I}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O} & \end{array}
$$ \begin{array}{ll}E_{+}^{\circ}=1.210 \mathrm{~V}

- \& 5 \mathrm{I}_{3}^{-}+10 \mathrm{e}^{-} \rightleftharpoons 15 \mathrm{I}^{-}\end{array} \quad\)	$E_{-}^{\circ}=0.535 \mathrm{~V}$
$2 \mathrm{IO}_{3}^{-}+16 \mathrm{I}^{-}+12 \mathrm{H}^{+} \rightleftharpoons 6 \mathrm{I}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{O}$	$\quad \begin{array}{ll}E^{\circ}=0.675 \mathrm{~V}\end{array}$

(b) $\Delta G^{\circ}=-10 F E^{\circ}=-651 \mathrm{~kJ}$.
$K=10^{10 E^{\circ}} / 0.05916=10^{114}$
(c) $E=\left\{1.210-\frac{0.05916}{10} \log \frac{\left[\mathrm{I}_{3}^{-}\right]}{\left[\mathrm{IO}_{3}^{-}\right]^{2}\left[\mathrm{I}^{-}\right]\left[\mathrm{H}^{+}\right]^{12}}\right\}-\left\{0.535-\frac{0.05916}{10} \log \frac{\left[\mathrm{I}^{-}\right]^{15}}{\left[\mathrm{I}_{3}^{-}\right]^{5}}\right\}=0.178 \mathrm{~V}$
(d) $\Delta G=-10 F E=-172 \mathrm{~kJ}$
(e) At equilibrium, $E=0 \Rightarrow E^{\circ}=\frac{0.05916}{10} \log \frac{\left[\mathrm{I}_{3}^{-}\right]^{6}}{\left[\mathrm{IO}_{3}^{-}\right]^{2}\left[\mathrm{I}^{-}\right]^{16}\left[\mathrm{H}^{+}\right]^{12}} \quad \Rightarrow\left[\mathrm{H}^{+}\right]=3.1 \times 10^{-9}$

$$
\Rightarrow \mathrm{pH}=8.51
$$

S14-11. $\operatorname{Mg}(\mathrm{OH})_{2}(s)+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}(s)+2 \mathrm{OH}^{-}$

$$
\begin{aligned}
E_{+}^{\circ} & =-2.690 \mathrm{~V} \\
E_{-}^{\circ} & =-2.360 \mathrm{~V} \\
\hline E^{\circ} & =-0.330 \mathrm{~V}
\end{aligned}
$$

$\frac{{ }^{-} \mathrm{Mg}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mg}(s)}{\mathrm{Mg}(\mathrm{OH})_{2}(s) \rightleftharpoons \mathrm{Mg}^{2+}+2 \mathrm{OH}^{-}}$
$K_{\mathrm{sp}}=10^{2(-0.330) / 0.05916}=7 \times 10^{-12}$
S14-12. $\mathrm{Cl}_{2}(a q)+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}$

$$
\frac{-\mathrm{Cl}_{2}(g)+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-}}{\mathrm{Cl}_{2}(a q) \rightleftharpoons \mathrm{Cl}_{2}(g)}
$$

$$
\begin{aligned}
E_{+}^{\circ} & =? \\
E_{-}^{\circ} & =1.360 \mathrm{~V} \\
\hline E^{\circ} & =E_{+}^{\circ}-1.360
\end{aligned}
$$

But $E^{\circ}=-\Delta G^{\circ} /(n F)=-\left(-6.9 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-1}\right) /\left(2 \cdot 9.6485 \times 10^{4} \mathrm{C} / \mathrm{mol}\right)$
$\Rightarrow E^{\circ}=+0.036 \mathrm{~V} \Rightarrow E_{+}^{\circ}=E^{\circ}+1.360=1.396 \mathrm{~V}$
S14-13. (a) $\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}^{3-}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(s)+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \quad E_{+}^{\circ}=0.017 \mathrm{~V}$

$$
\begin{aligned}
& -\mathrm{H}^{+}+\mathrm{e}^{-} \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(g) \\
& \mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}^{3-}+\frac{1}{2} \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{Ag}(s)+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{H}^{+} \\
& E=E^{\circ}-0.05916 \log \frac{\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]^{2}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{Ag}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{2}^{3-}\right] \sqrt{P_{\mathrm{H}_{2}}}} \\
& E=0.017-0.05916 \log \frac{(0.050)^{2}(1)}{(0.010) \sqrt{1}}=0.053 \mathrm{~V}
\end{aligned}
$$

$$
E_{-}^{\circ}=0 \mathrm{~V}
$$

$$
E^{\circ}=0.017 \mathrm{~V}
$$

(b) $\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(s)$

$$
E_{+}^{\circ}=0.799 \mathrm{~V}
$$

$$
\frac{\mathrm{H}^{+}+\mathrm{e}^{-} \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(g)}{\mathrm{Ag}^{-}+\frac{1}{2} \mathrm{H}_{2}(g) \rightleftharpoons \mathrm{Ag}(s)+\mathrm{H}^{+}}
$$

$$
E_{-}^{\circ}=0 \mathrm{~V}
$$

$$
E^{\circ}=0.799 \mathrm{~V}
$$

$$
E=E^{\circ}-0.05916 \log \frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{Ag}^{+}\right] \sqrt{P_{\mathrm{H}_{2}}}}
$$

$$
0.053=0.799-0.05916 \log \frac{(1)}{\left[\mathrm{Ag}^{+}\right] \sqrt{1}} \Rightarrow\left[\mathrm{Ag}^{+}\right]=2.5 \times 10^{-13} \mathrm{M}
$$

(c) $K_{\mathrm{f}}=\frac{\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}^{3-}\right]}{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right]^{2}}=\frac{0.010}{\left(2.5 \times 10^{-13}\right)(0.050)^{2}}=1.6 \times 10^{13}$

S14-14. $2 \mathrm{Fe}^{3+}+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Fe}^{2+} \quad E_{+}^{\circ}=0.771 \mathrm{~V}$

$$
\begin{array}{cl}
-\mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} & \frac{E_{-}^{\circ}=0.273 \mathrm{~V}}{\mathrm{U}^{4+}+2 \mathrm{Fe}^{3+}+2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{UO}_{2}^{2+}+2 \mathrm{Fe}^{2+}+4 \mathrm{H}^{+}} \\
1.018=0.498-\frac{0.05916}{2} \quad \log \frac{(0.050)(0.025)^{2}\left[\mathrm{H}^{+}\right]^{4}}{(0.050)(0.050)^{2}} & \Rightarrow\left[\mathrm{H}^{+}\right]=5.7 \times 10^{-5} \mathrm{M} \\
K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{2}^{-}\right]}{\left[\mathrm{HCO}_{2} \mathrm{H}\right]}=\frac{5.7 \times 10^{-5}(0.30)}{(0.10)}=1.7 \times 10^{-4} &
\end{array}
$$

S14-15. (a) 25.0 mL of $0.124 \mathrm{M} \mathrm{Na}_{3} \mathrm{PO}_{4}$ plus 25.0 mL of $0.248 \mathrm{M} \mathrm{HClO}_{4}$ give 50.0 mL of $0.0620 \mathrm{M} \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, the first intermediate form of the triprotic acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$.

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\sqrt{\frac{K_{1} K_{2}(0.0620)+K_{1} K_{\mathrm{W}}}{K_{1}+0.0620}}=2.01 \times 10^{-5} \mathrm{M}} \\
& {\left[\mathrm{HPO}_{4}^{2-}\right]=\frac{K_{2}\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]}{\left[\mathrm{H}^{+}\right]}=\frac{\left(6.23 \times 10^{-8}\right)(0.0620)}{\left(2.01 \times 10^{-5}\right)}=1.95 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

(b) In the left half-cell, $\left[\mathrm{Pb}^{2+}(\right.$ left $\left.)\right]=\frac{K_{\text {sp }} \text { for } \mathrm{PbHPO}_{4}}{\left[\mathrm{HPO}_{4}^{2-}\right]}=\frac{2.0 \times 10^{-10}}{1.95 \times 10^{-4}}=1.0 \times 10^{-6} \mathrm{M}$

The net cell reaction is $\mathrm{Pb}^{2+}($ left $) \rightleftharpoons \mathrm{Pb}^{2+}$ (right), for which $E^{\circ}=0$ and

$$
\begin{aligned}
E & =-\frac{0.05916}{2} \log \frac{\left[\mathrm{~Pb}^{2+}(\text { left })\right]}{\left[\mathrm{Pb}^{2+}(\text { right })\right]} \\
0.097 & =-\frac{0.05916}{2} \log \frac{1.0 \times 10^{-6}}{\left[\mathrm{~Pb}^{2+}(\text { right })\right]} \Rightarrow\left[\mathrm{Pb}^{2+}(\text { right })\right]=1.9 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

The right half-cell contains exactly twice as many moles of F^{-}as Pb^{2+}.
Therefore $\mathrm{PbF}_{2}(s)$ precipitates and in the solution $\left[\mathrm{F}^{-}\right]=2\left[\mathrm{~Pb}^{2+}\right]$.
$K_{\mathrm{sp}}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}=\left(1.9 \times 10^{-3}\right)\left(3.8 \times 10^{-3}\right)^{2}=2.7 \times 10^{-8}$
S14-16. $3\left[\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(s)\right]$

$$
E^{\circ}=0.339 \mathrm{~V}
$$

$$
\frac{-\mathrm{Sb}_{2} \mathrm{O}_{3}(s)+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Sb}(s)+3 \mathrm{H}_{2} \mathrm{O}}{3 \mathrm{Cu}^{2+}+2 \mathrm{Sb}(s)+3 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 3 \mathrm{Cu}(s)+\mathrm{Sb}_{2} \mathrm{O}_{3}(s)+6 \mathrm{H}^{+}} \quad \frac{E_{-}^{\circ}=0.147 \mathrm{~V}}{E^{\circ}=0.192 \mathrm{~V}}
$$

First find $\left[\mathrm{H}^{+}\right]$in left half-cell:

$$
\underset{1.52 \mathrm{mmol}}{\mathrm{H}_{3} \mathrm{~A}} \stackrel{\mathrm{p} K_{2}}{\rightarrow} \mathrm{H}_{2} \mathrm{~A}^{-} \xrightarrow{\mathrm{p} K_{3}} \quad \mathrm{HA}^{2-} \xrightarrow{\mathrm{p} K_{4}} \quad \mathrm{~A}^{3-}
$$

Addition of 3.50 mmol of NaOH creates 0.46 mmol of A^{3-} plus $1.06 \mathrm{mmol}^{2} \mathrm{HA}^{2-}$
$\mathrm{pH}=\mathrm{p} K_{4}+\log \frac{\left[\mathrm{A}^{3-}\right]}{\left[\mathrm{HA}^{2-}\right]}=10.334+\log \frac{0.46}{1.06}=9.97$
$E=\left\{0.339-\frac{0.05916}{6} \log \frac{1}{\left[\mathrm{Cu}^{2+}(\text { right })\right]^{3}}\right\}-\left\{0.147-\frac{0.05916}{6} \log \frac{1}{\left[\mathrm{H}^{+}(\mathrm{left})\right]^{6}}\right\}$

Inserting $E=0.418 \mathrm{~V}$ and $\left[\mathrm{H}^{+}(\right.$left $\left.)\right]=10^{-9.97}$ gives $\left[\mathrm{Cu}^{2+}(\right.$ right $\left.)\right]=5.02 \times 10^{-13} \mathrm{M}$
Now find [Y^{4-}] in right half-cell:

	Ca^{2+}	+	EDTA	\rightleftharpoons
initial mmol	2.38	2.22	-	
final mmol	0.16	-		2.22

$K_{\mathrm{f}}\left(\right.$ for $\left.\mathrm{CaY}^{2-}\right)=\frac{\left[\mathrm{CaY}^{2-}\right]}{\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{Y}^{4-}\right]}$
$4.9 \times 10^{10}=\frac{(2.22 \mathrm{mmol} / 150 \mathrm{~mL})}{(0.16 \mathrm{mmol} / 150 \mathrm{~mL})\left[\mathrm{Y}^{4-}\right]} \Rightarrow\left[\mathrm{Y}^{4-}\right]=2.83 \times 10^{-10} \mathrm{M}$
$K_{\mathrm{f}}\left(\right.$ for $\left.\mathrm{CuY}^{2-}\right)=\frac{\left[\mathrm{CuY}^{2-}\right]}{\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{Y}^{4-}\right]}=\frac{(0.00137)(100 / 150)}{\left(5.02 \times 10^{-13}\right)\left(2.8_{3} \times 10^{-10}\right)}=6 \times 10^{18}$
S14-17. $E=-0.1038-\frac{0.05916}{2} \log \frac{P_{\mathrm{CO}}}{P_{\mathrm{CO}_{2}}\left[\mathrm{H}^{+}\right]^{2}}$
$E=\underbrace{-0.1038+0.05916 \log \left[\mathrm{H}^{+}\right]}-\frac{0.05916}{2} \log \frac{P_{\mathrm{CO}}}{P_{\mathrm{CO}_{2}}}$
This is $E^{\circ \prime}$ when $\mathrm{pH}=7$
$E^{\circ 1}=-0.1038+0.05916 \log \left(10^{-7.00}\right)=-0.5179 \mathrm{~V}$
S14-18. $E=E^{\circ}-\frac{0.05916}{2} \log \frac{\left[\mathrm{HCO}_{2} \mathrm{H}\right]}{P_{\mathrm{CO}_{2}\left[\mathrm{H}^{+}\right]^{2}}}$

> Substituting $\left[\mathrm{HCO}_{2} \mathrm{H}\right]=\frac{\left[\mathrm{H}^{+}\right] \mathrm{F}_{\mathrm{HCO}_{2} \mathrm{H}}}{\left[\mathrm{H}^{+}\right]+K_{\mathrm{a}}}$ into the Nernst equation gives
> $E=-0.114-\frac{0.05916}{2} \log \frac{\left[\mathrm{H}^{+}\right] \mathrm{F}_{\mathrm{HCO}_{2} \mathrm{H}}}{\left(\left[\mathrm{H}^{+}\right]+K_{\mathrm{a}}\right) P_{\mathrm{CO}_{2}}\left[\mathrm{H}^{+}\right]^{2}}$
> $E=-\underbrace{-0.114+\frac{0.05916}{2} \log \left\{\left(\left[\mathrm{H}^{+}\right]+K_{\mathrm{a}}\right)\left[\mathrm{H}^{+}\right]\right\}}_{\text {This is } E^{\circ}}-\frac{0.05916}{2} \log \mathrm{pH}=7$

Inserting $K_{\mathrm{a}}=1.8 \times 10^{-4}$ for $\mathrm{HCO}_{2} \mathrm{H}$ and $\left[\mathrm{H}^{+}\right]=10^{-7.00}$ gives

$$
E^{01}=-0.114+\frac{0.05916}{2} \log \left\{\left(10^{-7.00}+1.8 \times 10^{-4}\right)\left(10^{-7.00}\right)\right\}=-0.432 \mathrm{~V}
$$

S14-19. Calling anthraquinone-2,6-disulfonate A, the reaction may be written

$$
\begin{array}{r}
\mathrm{A}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2} \mathrm{~A} . \\
E=0.229-\frac{0.05916}{2} \log \frac{\left[\mathrm{H}_{2} \mathrm{~A}\right]}{[\mathrm{A}]\left[\mathrm{H}^{+}\right]^{2}}
\end{array}
$$

But $\left[\mathrm{H}_{2} \mathrm{~A}\right]=\left[\mathrm{H}^{+}\right]^{2} \mathrm{~F}_{\mathrm{H}_{2} \mathrm{~A}} /\left(\left[\mathrm{H}^{+}\right]^{2}+\left[\mathrm{H}^{+}\right] K_{1}+K_{1} K_{2}\right)$ and $[\mathrm{A}]=\mathrm{F}_{\mathrm{A}}$.
Making these substitutions and rearranging the resulting Nernst equation gives

$$
E=\underbrace{0.229-\frac{0.05916}{2} \log \frac{1}{\left[\mathrm{H}^{+}\right]^{2}+\left[\mathrm{H}^{+}\right] K_{1}+K_{1} K_{2}}}_{E^{\circ}=-0.184 \mathrm{~V}}-\frac{0.05916}{2} \log \frac{\mathrm{~F}_{\mathrm{H}_{2} \mathrm{~A}}}{\mathrm{~F}_{\mathrm{A}}}
$$

S14-20. (a) Right: $\operatorname{Hg}^{+}\left(C_{\mathrm{R}}\right)+\mathrm{e}^{-} \rightleftharpoons \mathrm{Hg} \quad E_{+}^{\circ}$
Left: $\quad \mathrm{Hg}^{+}\left(C_{\mathrm{L}}\right)+\mathrm{e}^{-} \rightleftharpoons \mathrm{Hg} \quad E_{-}^{\circ}\left(=E_{+}^{\circ}\right.$ because reactions are the same $)$
$E_{+}=E_{+}^{\circ}-0.05916 \log \left(1 / C_{\mathrm{R}}\right) ; \quad E_{-}=E_{-}^{\circ}-0.05916 \log \left(1 / C_{\mathrm{L}}\right)$
$E=E_{+}-E_{-}=E_{+}^{\circ}-E_{-}^{\circ}-0.05916 \log \left(C_{\mathrm{L}} / C_{\mathrm{R}}\right)=-0.05916 \log \left(C_{\mathrm{L}} / C_{\mathrm{R}}\right)$
(b) Right: $\mathrm{Hg}_{2}^{2+}\left(C_{\mathrm{R}}\right)+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Hg} \quad E_{+}^{\circ}$

Left: $\operatorname{Hg}_{2}^{2+}\left(C_{\mathrm{L}}\right)+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Hg} \quad E_{-}^{\circ}\left(=E_{+}^{\circ}\right)$
$E_{+}=E_{+}^{\circ}-\frac{0.05916}{2} \log \left(1 / C_{\mathrm{R}}\right) ; \quad E_{-}=E_{-}^{\circ}-\frac{0.05916}{2} \log \left(1 / C_{\mathrm{L}}\right)$
$E=E_{+}-E_{-}=-\frac{0.05916}{2} \log \left(C_{\mathrm{L}} / C_{\mathrm{R}}\right)$
(c) If $\operatorname{Hg}(\mathrm{I})$ is monatomic, the slope of the graph should be -59.16 mV .

If $\mathrm{Hg}(\mathrm{I})$ is diatomic, the slope should be -29.58 mV .

(d)

Cell:	1	2	3	4	5
$C_{\mathrm{L}} / C_{\mathrm{R}}:$	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}

(e) The graph above clearly shows that $\mathrm{Hg}(\mathrm{I})$ is diatomic.
(f) Solution B keeps the ionic strength constant. In cell 1 , the ionic strength from $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ is 0.15 M and the ionic strength from HNO_{3} is 0.16 M , giving a total ionic strength of 0.31 M. In cell 2 , the ionic strength from solution A is 0.031 M and the ionic strength from solution B is 0.28 M , giving a total ionic strength of 0.31 M . The ionic strength is 0.31 M in all cells.
(g) If we do a chemical analysis for mercury and one for nitrate, we could establish that the mole ratio of Hg to nitrate is $1: 1$. This would establish that the oxidation state of mercury is +1 , not +2 .
S15-1. (a) -0.419 V
(b) 0.720 V
(c) -0.479 V
(d) -0.009 V
(e) 0.009 V

S15-2. $\mathrm{Br}_{2}(a q)+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Br}^{-} \quad E_{+}^{\circ}=1.098 \mathrm{~V}$

$$
\begin{aligned}
& E_{+}=E_{+}^{\circ}-\frac{0.05916}{2} \log \frac{\left[\mathrm{Br}^{-}\right]^{2}}{\left[\mathrm{Br}_{2}(\mathrm{aq})\right]}=1.098-\frac{0.05916}{2} \log \frac{[0.234]^{2}}{[0.00217]}=1.057 \mathrm{~V} \\
& E=E_{+}-E_{-}=1.057-0.241=0.816 \mathrm{~V}
\end{aligned}
$$

S15-3. $\quad V_{\mathrm{e}}=25.0 \mathrm{~mL} . \mathrm{Ag}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}(s) \Rightarrow E_{+}=0.799-0.05916 \log \frac{1}{\left[\mathrm{Ag}^{+}\right]}$
$0.1 \mathrm{~mL}: \quad\left[\mathrm{SCN}^{-}\right]=\left(\frac{24.9}{25.0}\right) \quad(0.100 \mathrm{M}) \quad\left(\frac{50.0}{50.1}\right)=0.0994 \mathrm{M}$

Fraction

Original

remaining concentration factor

$$
\begin{aligned}
& {\left[\mathrm{Ag}^{+}\right]=K_{\mathrm{sp}} /\left[\mathrm{SCN}^{-}\right]=\left(1.1 \times 10^{-12}\right) / 0.0994=1.1 \times 10^{-11} \mathrm{M}} \\
& E=E_{+}-E_{-}=\left\{0.799-0.05916 \log \frac{1}{1.1 \times 10^{-11}}\right\}-0.241=-0.090 \mathrm{~V}
\end{aligned}
$$

$10.0 \mathrm{~mL}: \quad\left[\mathrm{SCN}^{-}\right]=\left(\frac{15.0}{25.0}\right)(0.100 \mathrm{M})\left(\frac{50.0}{60.0}\right)=0.0500 \mathrm{M}$

$$
\begin{aligned}
& {\left[\mathrm{Ag}^{+}\right]=K_{\mathrm{sp}} /\left[\mathrm{SCN}^{-}\right]=\left(1.1 \times 10^{-12}\right) / 0.0500=2.2 \times 10^{-11} \mathrm{M}} \\
& E=E_{+}-E_{-}=\left\{0.799-0.05916 \log \frac{1}{2.2 \times 10^{-11}}\right\}-0.241=-0.073 \mathrm{~V}
\end{aligned}
$$

$25.0 \mathrm{~mL}:\left[\mathrm{Ag}^{+}\right]=\left[\mathrm{SCN}^{-}\right] \Rightarrow\left[\mathrm{Ag}^{+}\right]=\sqrt{K_{\mathrm{sp}}}=\sqrt{1.1 \times 10^{-12}}=1.05 \times 10^{-6} \mathrm{M}$

$$
E=E_{+}-E_{-}=\left\{0.799-0.05916 \log \frac{1}{1.0_{5} \times 10^{-6}}\right\}-0.241=0.204 \mathrm{~V}
$$

30.0 mL : This is 5.0 mL past $V_{\mathrm{e}} \Rightarrow\left[\mathrm{Ag}^{+}\right]=\left(\frac{5.0}{80.0}\right)(0.200 \mathrm{M})=0.0125 \mathrm{M}$

$$
E=E_{+}-E_{-}=\left\{0.799-0.05916 \log \frac{1}{0.0125}\right\}-0.241=0.445 \mathrm{~V}
$$

S15-4. (a) Ag^{+}(right) $+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ag}$

$$
\begin{aligned}
& E_{+}^{\circ}=0.799 \mathrm{~V} \\
& E_{-}^{\circ}=0.799 \mathrm{~V} \\
& \hline E^{\circ}=0
\end{aligned}
$$

$$
E=-0.05916 \log \frac{\left[\mathrm{Ag}^{+}(\mathrm{left})\right]}{\left[\mathrm{Ag}^{+}(\text {right })\right]}
$$

(b) $\mathrm{NH}_{3}: V_{\mathrm{e}}=9.8 \mathrm{~mL} \Rightarrow \mathrm{NH}_{3} / \mathrm{Ag}^{+}=1.99 \Rightarrow 2 \mathrm{NH}_{3}+\mathrm{Ag}^{+} \rightleftharpoons\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ag}^{+}$

$$
\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}: \quad V_{\mathrm{e}}=5.0 \mathrm{~mL} \Rightarrow \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} / \mathrm{Ag}^{+}=1.15
$$

$$
\Rightarrow \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{Ag}^{+} \rightleftharpoons\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right) \mathrm{Ag}^{+}
$$

(c) At the equivalence point, $E=-0.15 \mathrm{~V}$ and $\left[\mathrm{Ag}^{+}(\right.$left $\left.)\right]=0.100 \mathrm{M}$.

$$
-0.15=-0.05916 \log \frac{0.100}{\left[\mathrm{Ag}^{+}(\text {right })\right]} \Rightarrow\left[\mathrm{Ag}^{+}(\text {right })\right] \approx 0.03 \mathrm{M}
$$

S15-5. right half-reaction : $\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Zn}(s) \quad E^{\circ}=-0.762 \mathrm{~V}$

$$
\begin{aligned}
& E=\left\{-0.762-\frac{0.05916}{2} \log \frac{1}{\left[\mathrm{Zn}^{2+}\right]}\right\}-0.241 \\
& \mathrm{MgY}^{2-}: K_{\mathrm{f}}=6.2 \times 10^{8} ; \quad \mathrm{ZnY}^{2-}: \quad K_{\mathrm{f}}=3.2 \times 10^{16}
\end{aligned}
$$

When 10 mL of EDTA has been added, $\left[\mathrm{Mg}^{2+}\right]=\left(\frac{4}{5}\right)(0.100)\left(\frac{50}{60}\right)$

$$
=0.0667 \mathrm{M} \text { and }\left[\mathrm{MgY}^{2-}\right]=\left(\frac{1}{5}\right)(0.100)\left(\frac{50}{60}\right)=0.0167 \mathrm{M}
$$

But $\frac{\left[\mathrm{MgY}^{2-}\right]}{\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{Y}^{4-}\right]}=6.2 \times 10^{8} \Rightarrow\left[\mathrm{Y}^{4-}\right]=4.04 \times 10^{-10} \mathrm{M}$.
The concentration of $\left[\mathrm{ZnY}^{2-}\right]$ is $(50 / 60)\left(1.00 \times 10^{-5}\right)=8.33 \times 10^{-6} \mathrm{M}$.
Because $\frac{\left[\mathrm{ZnY}^{2-}\right]}{\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{Y}^{4-}\right]}=3.2 \times 10^{16}$ and we know $\left[\mathrm{Y}^{4-}\right]$ and $\left[\mathrm{ZnY}^{2-}\right]$,
we can compute that $\left[\mathrm{Zn}^{2+}\right]=6.44 \times 10^{-13} \mathrm{M}$.
$E=\left\{-0.762-\frac{0.05916}{2} \log \frac{1}{6.44 \times 10^{-13}}\right\}-0.241=-1.364 \mathrm{~V}$
S15-6. Relative mobilities:

$$
\mathrm{H}^{+} \rightarrow 36.30 \quad \mathrm{Cl}^{-} \rightarrow 7.91
$$

$4.01 \leftarrow \mathrm{Li} \quad 8.13 \leftarrow \mathrm{Br}^{-}$
Anion diffusion from each side is nearly equal, while H^{+}diffuses much faster than Li^{+}. Positive charge builds on the right, so the left side will be negative.

S15-7. Velocity $=$ mobility \times field $=\left(20.50 \times 10^{-8} \mathrm{~m}^{2} /(\mathrm{s} \cdot \mathrm{V})\right) \times(1000 \mathrm{~V} / \mathrm{m})$

$$
=2.05 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1} \text { for } \mathrm{OH}^{-} \text {and }\left(5.70 \times 10^{-8}\right)(1000)=5.70 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1} \text { for } \mathrm{F}^{-}
$$

To cover 0.0100 m will require $(0.0100 \mathrm{~m}) /\left(2.05 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}\right)=48.8 \mathrm{~s}$ for OH^{-}and $(0.0100) /\left(5.70 \times 10^{-5}\right)=175 \mathrm{~s}$ for NO_{3}^{-}.

S15-8. (a) $E=$ constant $+\beta \frac{0.05916}{3} \log \mathcal{A}_{\mathrm{La}}{ }^{3+}$ (outside).
(b) If the activity increases by a factor of 10 , the potential will increase by $0.05916 / 3$ $=19.7 \mathrm{mV}$.
(c) $E_{1}=$ constant $+(1.00) \frac{0.05916}{3} \log \left(2.36 \times 10^{-4}\right)$

$$
\begin{aligned}
& E_{2}=\text { constant }+(1.00) \frac{0.05916}{3} \log \left(4.44 \times 10^{-3}\right) \\
& \Delta E=E_{2}-E_{1}=\frac{0.05916}{3} \log \frac{4.44 \times 10^{-3}}{2.36 \times 10^{-4}}=+25.1 \mathrm{mV}
\end{aligned}
$$

(d) $E=$ constant $+\frac{0.05916}{3} \log \left\{\left[\mathrm{La}^{3+}\right]+\frac{1}{1200}\left[\mathrm{Fe}^{3+}\right]^{1 / 1}\right\}$

$$
\begin{aligned}
& 0.100=\text { constant }+\frac{0.05916}{3} \log \left(1.00 \times 10^{-4}\right) \Rightarrow \text { constant }=0.1789 \mathrm{mV} \\
& E=0.1789+\frac{0.05916}{3} \log \left\{\left(1.00 \times 10^{-4}\right)+\frac{1}{1200}(0.010)\right\}=+100.7 \mathrm{mV}
\end{aligned}
$$

S15-9. $\frac{[\mathrm{ML}]}{[\mathrm{M}][\mathrm{L}]}=3.6 \times 10^{10}=\frac{0.050}{[\mathrm{M}](0.50)} \Rightarrow[\mathrm{M}]=2.8 \times 10^{-12} \mathrm{M}$
$\mathbf{S 1 5 - 1 0}$. For the pure $\left[\mathrm{Ca}^{2+}\right]$ solution we can write
$E=$ constant $+\frac{(0.970)(0.05916)}{2} \log \left(1.00 \times 10^{-3}\right)$
Putting in $E=0.3000 \mathrm{~V}$ gives constant $=0.3861 \mathrm{~V}$. For the solution containing the interfering ions we can say that $E=0.3861+\frac{(0.970)(0.05916)}{2} \log \left\{\left(1.00 \times 10^{-3}\right)+\right.$ $\left.(0.040)\left(1.00 \times 10^{-3}\right)+(0.021)\left(1.00 \times 10^{-3}\right)+(0.081)\left(5.00 \times 10^{-4}\right)\right\}=0.3012 \mathrm{~V}$
At equal concentrations, Zn^{2+} interferes the most.
S15-11. $0.1946=\mathrm{constant}+\frac{0.0571}{2} \log \left\{\left[\mathrm{M}^{2+}\right]_{\mathrm{o}}+0.0200(0.0200)\right\}$
After making the standard addition, the concentration of M^{2+} is

$$
\begin{aligned}
& \frac{100.0\left[\mathrm{M}^{2+}\right]_{\mathrm{o}}+1.00(0.0307)}{101.0}=\left(0.990_{1}\left[\mathrm{M}^{2+}\right]_{\mathrm{o}}+3.04_{0} \times 10^{-4}\right) \mathrm{M} \\
& 0.2007=\text { constant }+\frac{0.0571}{2} \log \left\{\left(0.990_{1}\left[\mathrm{M}^{2+}\right]_{\mathrm{o}}+3.04_{0} \times 10^{-4}\right)+0.0200(0.0200)\right\} \\
& =\text { constant }+\frac{0.0571}{2} \log \left\{0.990_{1}\left[\mathrm{M}^{2+}\right]_{\mathrm{o}}+7.04_{0} \times 10^{-4}\right\} \\
& \Delta E=(0.2007-0.1946)=\frac{0.0571}{2} \log \frac{\left(0.990_{1}\left[\mathrm{M}^{2+}\right]_{\mathrm{O}}+7.04_{0} \times 10^{-4}\right)}{\left[\mathrm{M}^{2+}\right]_{\mathrm{o}}+4.00 \times 10^{-4}} \\
& \Rightarrow\left[\mathrm{M}^{2+}\right]_{\mathrm{o}}=7.7 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

S15-12. For $\operatorname{Mg}(E D T A)^{2-}, K_{\mathrm{f}}=6.2 \times 10^{8}$. This solution contains 30% more EDTA than Mg^{2+}. Therefore, $[$ EDTA $] /\left[\operatorname{Mg}(E D T A)^{2-}\right]=0.30$
$\frac{\left[\mathrm{Mg}(\mathrm{EDTA})^{2-}\right]}{\left[\mathrm{Mg}^{2+}\right][\mathrm{EDTA}]}=\alpha_{\mathrm{Y}} 4-K_{\mathrm{f}}=0.36 K_{\mathrm{f}}$
$\left[\mathrm{Mg}^{2+}\right]=\frac{\left[\mathrm{Mg}(\mathrm{EDTA})^{2-}\right]}{[\mathrm{EDTA}] \alpha_{\mathrm{Y}} 4-K_{\mathrm{f}}}=\frac{1}{(0.30)(0.36) K_{\mathrm{f}}}=1.49 \times 10^{-8} \mathrm{M}$
For $\mathrm{Mn}(E D T A)^{2-}, K_{\mathrm{f}}=7.4 \times 10^{13}$ and $\left[\mathrm{Mn}^{2+}\right]=1.25 \times 10^{-13} \mathrm{M}$
S15-13. $\quad \mathrm{pH}=-\log \mathcal{A}_{\mathrm{H}^{+}}=-\log [\mathrm{H}+] \gamma_{\mathrm{H}^{+}} \Rightarrow \gamma_{\mathrm{H}^{+}}=10-\mathrm{pH} /\left[\mathrm{H}^{+}\right] \quad$ At $\mu 0$, we know $\gamma_{\mathrm{H}^{+}}=1$

$\mu(\mathrm{M})$	pH	$\gamma_{\mathrm{H}^{+}}$	$\mu(\mathrm{M})$	pH	$\gamma_{\mathrm{H}^{+}}$
0.10	2.13	0.74	1.60	1.96	1.10
0.30	2.16	0.69	1.80	1.92	1.20
0.50	2.16	0.69	2.00	1.86	1.38
1.00	2.09	0.81	2.40	1.76	1.74
1.20	2.05	0.89	2.50	1.73	1.86
1.50	1.99	1.02	3.00	1.59	2.57

S15-14. The unknown contains x moles of ClO_{4}^{-}in 0.0500 L .
The standard addition adds $(0.00100 \mathrm{~L})(0.0500 \mathrm{M})=5.00 \times 10^{-5} \mathrm{~mol}^{2} \mathrm{ClO}_{4}^{-}$.
Therefore, the second solution contains $x+\left(5.00 \times 10^{-5}\right) \mathrm{mol}$ in 0.0510 L .
We can write a Nernst equation for the first solution:

$$
E_{1}=\text { constant }-0.05916 \log \left[\mathrm{ClO}_{4}^{-}\right]_{1}
$$

and another for the second solution:

$$
E_{2}=\text { constant }-0.05916 \log \left[\mathrm{ClO}_{4}^{-}\right]_{2}
$$

We set $E_{1}=0.3587 \mathrm{~V}, E_{2}=0.3461 \mathrm{~V},\left[\mathrm{ClO}_{4}^{-}\right]_{1}=x / 0.0500$, and $\left[\mathrm{ClO}_{4}^{-}\right]_{2}=\left(x+5.00 \times 10^{-5}\right) / 0.0510$.
Now we solve for x by subtracting one equation from the other:

$$
\begin{aligned}
& 0.3587=\text { constant }-0.05916 \log [x / 0.0500] \\
& -0.3461=\text { constant }-0.05916 \log \left[\left(x+5.00 \times 10^{-5}\right) / 0.0510\right] \\
& 0.0126=-0.05916 \log \left(\frac{x / 0.0500}{\left(x+5.00 \times 10^{-5}\right) / 0.0510}\right) \\
& \frac{x / 0.0500}{\left(x+5.00 \times 10^{-5}\right) / 0.0510}=0.612 \Rightarrow x=7.51 \times 10^{-5} \mathrm{~mol}
\end{aligned}
$$

The original perchlorate concentration was therefore $\frac{7.51 \times 10^{-5} \mathrm{~mol}}{0.0500 \mathrm{~L}}=1.50 \mathrm{mM}$
S15-15. (a) For the original solution, we can write

$$
\left[\mathrm{Ag}^{+}\right]=\frac{\left[\mathrm{Ag}(\mathrm{CN})_{2}^{-}\right]}{\left[\mathrm{CN}^{-}\right]^{2}\left(7.1 \times 10^{19}\right)}=\frac{\left[\left(1.00 \times 10^{-5}\right)\right.}{\left(8.0 \times 10^{-6}\right)^{2}\left(7.1 \times 10^{19}\right)}=2.2 \times 10^{-15} \mathrm{M}
$$

$$
E=\text { constant }+0.05916 \log \left(2.2 \times 10^{-15}\right)=206.3 \mathrm{mV} \Rightarrow \text { constant }=1.0734 \mathrm{~V}
$$

After addition of CN^{-}, we can say that

$$
\begin{aligned}
& {[\mathrm{Ag}+]=\frac{\left(1.00 \times 10^{-5}\right)}{\left(12.0 \times 10^{-6}\right)^{2}\left(7.1 \times 10^{19}\right)}=9.8 \times 10^{-216} \mathrm{M}} \\
& E=1.0734+0.05916 \log \left(9.9 \times 10^{-16}\right)=185.4 \mathrm{mV}
\end{aligned}
$$

(b) Let there be $x \mathrm{~mol}$ of CN^{-}in 50.0 mL of unknown. After the standard addition, the unknown contains $x+\left(1.00 \times 10^{-3} \mathrm{~L}\right)\left(2.50 \times 10^{-4} \mathrm{M}\right)=\left(x+2.50 \times 10^{-7}\right) \mathrm{mol} \mathrm{CN}^{-}$

S15-16. (a) $8.22 \mathrm{ppm}=8.22 \times 10^{-6} \mathrm{~g}$ of Cl${ }^{-}$per g of solution $=8.22 \times 10^{-3} \mathrm{~g}_{\mathrm{of} \mathrm{Cl}}{ }^{-}$per liter of solution $=2.32 \times 10^{-4} \mathrm{M}$.
(b) For a Nernstian electrode we can write $E=$ constant $-0.05916 \log \left[\mathrm{Cl}^{-}\right]$

For the first solution, $0.2280=$ constant $-0.05916 \log \left(2.32 \times 10^{-4}\right)$
\Rightarrow constant $=0.0130 \mathrm{~V}$.
10.0 mL of 100.0 ppm standard contains 2.82×10^{-5} moles of Cl^{-}.

The original 100.0 mL of solution contains 2.32×10^{-5} moles of Cl^{-}.
Therefore, the new solution has

$$
\begin{aligned}
& {\left[\mathrm{Cl}^{-}\right]=\frac{(2.32+2.82) \times 10^{-5} \mathrm{~mol}}{0.110 \mathrm{~L}}=4.67 \times 10^{-4} \mathrm{M}} \\
& E=0.0130-0.05916 \log \left(4.67 \times 10^{-4}\right)=210.0 \mathrm{mV}
\end{aligned}
$$

(c) A 2 mV change for Cl^{-}corresponds to a 1 mV change for Ca^{2+}. We could use the table:

$\Delta E:$	0	0.5	1.0	1.5
$Q:$	1.00	0.696	0.529	0.423

S15-17. (a) Let $\mathrm{C}_{0}=$ initial concentration of unknown in 100 mL and

$$
\mathrm{S}_{0}=\text { initial concentration of standard in } 10 \mathrm{~mL}
$$

Concentration of analyte in diluted sample $=\frac{100}{110} \mathrm{C}_{0}+\frac{10}{110} \mathrm{~S}_{0}=\frac{10 \mathrm{C}_{0}+\mathrm{S}_{0}}{11}$
Before standard addition : $E_{1}=$ constant $+0.05916 \log \mathrm{C}_{0}$
After standard addition : $E_{2}=$ constant $+0.05916 \log \frac{10 \mathrm{C}_{0}+\mathrm{S}_{0}}{11}$

$$
\Delta E=0.001 \mathrm{~V}=E_{2}-E_{1}=0.05916 \log \frac{10 \mathrm{C}_{0}+\mathrm{S}_{0}}{11 \mathrm{C}_{0}}
$$

Solve for $\mathrm{C}_{0} \Rightarrow \mathrm{C}_{0}=0.696 \mathrm{~S}_{0} \Rightarrow Q=0.696$
(b) General solution in part a: $Q=\mathrm{C}_{0} / \mathrm{S}_{0}=1 /(11 a-10)$, where $a=10 \Delta E / 0.05916$

	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{1}$	DeltaE (mV)	$\mathrm{a}=10^{\wedge}(\mathrm{DeltaE} / 59.16)$	$\mathrm{Q}=1 /(11 \mathrm{a}-10)$
$\mathbf{2}$	0	1.0000	1.0000
$\mathbf{3}$	1	1.0397	0.6961
$\mathbf{4}$	2	1.0810	0.5290
$\mathbf{5}$	3	1.1239	0.4233
$\mathbf{6}$	4	1.1685	0.3505
$\mathbf{7}$	5	1.2148	0.2973

S15-18. Mean $=1.22_{1} \quad$ standard deviation $=0.05_{0}$

$$
\mu=\bar{x} \pm \frac{t s}{\sqrt{n}}=1.22_{1} \pm \frac{(2.17)\left(0.05_{0}\right)}{\sqrt{14}}=1.22_{1} \pm 0.02_{9}=1.19_{2} \text { to } 1.25_{0}
$$

(Student's t was interpolated in Table 4-2 for 13 degrees of freedom.)
The value 1.19 is just barely outside the 95% confidence interval. It is so close to the 95% boundary that I would not say it is outside of "experimental error."

S15-19. $\quad[\mathrm{KF}](\mathrm{M}) \quad$ Ionic strength (M) Activity coefficient $\left(\gamma_{\mathrm{F}}{ }^{-}\right) \quad$ Activity $\left(\mathcal{A}_{\mathrm{F}^{-}}\right)$

1.00×10^{-1}	0.100	0.76	0.076
1.00×10^{-2}	0.0100	0.90	0.0090
1.00×10^{-3}	0.00100	0.964	0.000964
1.00×10^{-4}	10^{-4}	close to 1	10^{-4}
1.00×10^{-5}	10^{-5}	close to 1	10^{-5}
1.00×10^{-6}	10^{-6}	close to 1	10^{-6}
1.00×10^{-7}	10^{-7}	close to 1	10^{-7}

The graph of E vs. $\log \mathcal{A}_{\mathrm{F}}$ - is linear for the concentration range 10^{-1} to 10^{-5} with a slope of -57.5 mV . (The linear region extends almost to $10^{-6} \mathrm{M}$.)
Assuming that the temperature was $25^{\circ} \mathrm{C}$, the theoretical slope would be -59.16 mV , so the value of β is $57.5 / 59.16=0.972$. If you chose to fit the data down to $10^{-6} \mathrm{M}$ (which is not unreasonable), the slope is -56.0 mV and β is 0.947 .

S15-20. (a) We want the fractional composition equations for ethylenediamine:

$$
\begin{aligned}
& \text { fraction in the form } \mathrm{enH}^{+}=\alpha_{\mathrm{HA}^{-}}=\frac{K_{1}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{2}+\left[\mathrm{H}^{+}\right] K_{1}+K_{1} K_{2}} \\
& \text { fraction in the form } \mathrm{enH}_{2}^{2+}=\alpha_{\mathrm{H}_{2} \mathrm{~A}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{2}+\left[\mathrm{H}^{+}\right] K_{1}+K_{1} K_{2}} \\
& \text { fraction in the form en }=\alpha_{\mathrm{A}^{2-}}=\frac{K_{1} K_{2}}{\left[\mathrm{H}^{+}\right]^{2}+\left[\mathrm{H}^{+}\right] K_{1}+K_{1} K_{2}}
\end{aligned}
$$

(b) There are 4 equilibrium constants. There is no charge balance because the pH was fixed.

We can write two mass balances, one for Cu^{2+} and one for en:

$$
\begin{aligned}
& \mathrm{Cu}_{\text {total }}=0.00100 \mathrm{M}=\left[\mathrm{Cu}^{2+}\right]+\left[\mathrm{Cu}(\mathrm{en})^{2+}\right]+\left[\mathrm{Cu}(\mathrm{en})_{2}^{2+}\right] \\
& \mathrm{en}_{\text {total }}=0.0150 \mathrm{M}=[\mathrm{en}]+\left[\mathrm{enH}^{+}\right]+\left[\mathrm{enH}_{2}^{2+}\right]+\left[\mathrm{Cu}(\mathrm{en})^{2+}\right]+2\left[\mathrm{Cu}(\mathrm{en})_{2}^{2+}\right]
\end{aligned}
$$

S16-1. (a) $2 \mathrm{Cu}^{2+}+\mathrm{In}^{+} \rightarrow 2 \mathrm{Cu}^{+}+\mathrm{In}^{3+}$
(b) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}^{+} \quad E^{\circ}=0.161 \mathrm{~V}$
$\mathrm{In}^{3+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{In}^{+} \quad E^{\circ}=-0.444 \mathrm{~V}$
(c) $E=\left\{0.161-0.05916 \log \frac{\left[\mathrm{Cu}^{+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right\}-\{0.241\}$
$E=\left\{-0.444-\frac{0.05916}{2} \log \frac{\left[\mathrm{In}^{+}\right]}{\left[\operatorname{In}^{3+}\right]}\right\}-\{0.241\}$
(d) $\underline{1.00 \mathrm{~mL}}$: Use Equation B with $\left[\mathrm{In}^{+}\right] /\left[\mathrm{In}^{3+}\right]=39.0 / 1.00$, since

$$
V_{\mathrm{e}}=40.0 \mathrm{~mL} \Rightarrow E=-0.732 \mathrm{~V}
$$

$20.0 \mathrm{~mL}: \quad\left[\mathrm{In}^{+}\right] /\left[\mathrm{In}^{3+}\right]=20.0 / 20.0 \Rightarrow E=-0.685 \mathrm{~V}$
$\underline{39.0 \mathrm{~mL}}: \quad\left[\mathrm{In}^{+}\right] /\left[\mathrm{In}^{3+}\right]=1.0 / 39.0 \Rightarrow E=-0.638 \mathrm{~V}$
40.0 mL : This is V_{e}, where $\left[\mathrm{Cu}^{+}\right]=2\left[\mathrm{In}^{3+}\right]$ and $\left[\mathrm{Cu}^{2+}\right]=2\left[\mathrm{In}^{+}\right]$.

Adding the two Nernst equations gives

$$
\begin{aligned}
E_{+} & =0.161-0.05916 \log \frac{\left[\mathrm{Cu}^{+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \\
2 E_{+} & =-0.888-0.05916 \log \frac{\left[\mathrm{In}^{+}\right]}{\left[\mathrm{In}^{3+}\right]}
\end{aligned}
$$

$$
\begin{aligned}
3 E_{+} & =-0.727-0.05916 \log \frac{\left[\operatorname{In}^{+}\right]\left[\mathrm{Cu}^{+}\right]}{\left[\operatorname{In}^{3+}\right]\left[\mathrm{Cu}^{2+}\right]} \\
3 E_{+} & =-0.727-0.05916 \log \frac{\left[\operatorname{In}^{+}\right] 2\left[\mathrm{In}^{3+}\right]}{\left[\operatorname{In}^{3+}\right] 2\left[\mathrm{In}^{+}\right]} \\
\Rightarrow E_{+} & =-0.242 \mathrm{~V} \text { and } E=-0.483 \mathrm{~V} .
\end{aligned}
$$

$\underline{41.0 \mathrm{~mL}}$: Use Equation A with $\left[\mathrm{Cu}^{+}\right] /\left[\mathrm{Cu}^{2+}\right]=40.0 / 1.0 \Rightarrow E=-0.175 \mathrm{~V}$
$\underline{80.0 \mathrm{~mL}}:\left[\mathrm{Cu}^{+}\right] /\left[\mathrm{Cu}^{2+}\right]=40.0 / 40.0 \Rightarrow E=-0.080 \mathrm{~V}$
S16-2. (a) $\mathrm{Fe}^{3+}+\mathrm{Cu}^{+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cu}^{2+}$
(b) $\mathrm{Fe}^{3+}+\mathrm{e}^{-}=\mathrm{Fe}^{2+} \quad E^{\circ}=0.771 \mathrm{~V}$
$\mathrm{Cu}^{2+}+\mathrm{e}^{-}=\mathrm{Cu}^{+} \quad E^{\circ}=0.161 \mathrm{~V}$
(c) $E=\left\{0.771-0.05916 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}\right\}-\{0.197\}$
(A)
$E=\left\{0.161-0.05916 \log \frac{\left[\mathrm{Cu}^{+}\right]}{\left[\mathrm{Cu}^{2+}\right]}\right\}-\{0.197\}$
(d) 1.0 mL : Use Equation A with $\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]=1.0 / 24.0$, since

$$
V_{\mathrm{e}}=25.0 \mathrm{~mL} \Rightarrow E=0.656 \mathrm{~V}
$$

$12.5 \mathrm{~mL}: \quad\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]=12.5 / 12.5 \Rightarrow E=0.574 \mathrm{~V}$
$\underline{24.5 \mathrm{~mL}}: \quad\left[\mathrm{Fe}^{2+}\right] /\left[\mathrm{Fe}^{3+}\right]=24.5 / 0.5 \Rightarrow E=0.474 \mathrm{~V}$
$\underline{25.0 \mathrm{~mL}}$: This is V_{e}, where $\left[\mathrm{Cu}^{2+}\right]=\left[\mathrm{Fe}^{2+}\right]$ and $\left[\mathrm{Cu}^{+}\right]=\left[\mathrm{Fe}^{3}\right]$.
Adding the two Nernst equations gives

$$
\begin{aligned}
E_{+} & =0.771-0.05916 \log \frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]} \\
E_{+} & =0.161-0.05916 \log \frac{\left[\mathrm{Cu}^{+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \\
2 E_{+} & =0.932-0.05916 \log \frac{\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{Cu}^{+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{Cu}^{2+}\right]} \\
2 E_{+} & =0.932-0.05916 \log \frac{\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{Fe}^{2+}\right]} \\
\Rightarrow E_{+} & =0.466 \mathrm{~V} \text { and } E=0.269 \mathrm{~V} .
\end{aligned}
$$

$\underline{25.5 \mathrm{~mL}}$: Use Equation B with $\left[\mathrm{Cu}^{+}\right] /\left[\mathrm{Cu}^{2+}\right]=0.5 / 25.0 \Rightarrow E=0.065 \mathrm{~V}$
$\underline{30.0 \mathrm{~mL}}:\left[\mathrm{Cu}^{+}\right] /\left[\mathrm{Cu}^{2+}\right]=5.0 / 25.0 \Rightarrow E=0.005 \mathrm{~V}$
S16-3. Titration reactions:

$$
\begin{aligned}
& \mathrm{V}^{2+}+\mathrm{Ce}^{4+} \rightarrow \mathrm{V}^{3+}+\mathrm{Ce}^{3+} \\
& \mathrm{V}^{3+}+\mathrm{Ce}^{4+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}^{2+}+\mathrm{Ce}^{3+}+2 \mathrm{H}^{+} \\
& \mathrm{VO}^{2+}+\mathrm{Ce}^{4+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{VO}_{2}^{+}+\mathrm{Ce}^{3+}+2 \mathrm{H}^{+}
\end{aligned}
$$

At $5.0 \mathrm{~mL}: \quad E_{+}=-0.255-0.05916 \log \frac{\left[\mathrm{~V}^{2+}\right]}{\left[\mathrm{V}^{3+}\right]} \Rightarrow E=-0.496 \mathrm{~V}$
At $15.0 \mathrm{~mL}: \quad E_{+}=0.337-0.05916 \log \frac{\left[\mathrm{~V}^{3}+7\right.}{\left[\mathrm{VQ}^{2+}\right](1.00)^{2}} \quad \Rightarrow E=0.096 \mathrm{~V}$
At $25.0 \mathrm{~mL}: \quad E_{+}=1.001-0.05916 \log \frac{\mathrm{VQ}^{2}+\mathrm{T}}{\left[\mathrm{VO}_{2}^{+}\right](1.00)^{2}} \quad \Rightarrow E=0.760 \mathrm{~V}$
At $35.0 \mathrm{~mL}: \quad E_{+}=1.70-0.05916 \log \frac{\left[\mathrm{Ce}^{3+}\right]}{\left[\mathrm{Ce}^{4+}\right]}=1.70-0.05916 \log \left(\frac{30.0}{5.0}\right) \Rightarrow E=1.41 \mathrm{~V}$

S16-4. $3 \mathrm{MnO}_{4}^{-}+5 \mathrm{Mo}^{3+}+4 \mathrm{H}^{+} \rightarrow 3 \mathrm{Mn}^{2+}+5 \mathrm{MoO}_{2}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
$(22.11-0.07)=22.04 \mathrm{~mL}$ of $0.01234 \mathrm{M} \mathrm{KMnO}_{4}=0.2720 \mathrm{mmol}$ of MnO_{4}^{-} which will react with $(5 / 3)(0.2720)=0.4533 \mathrm{mmol}$ of Mo^{3+}.
$\left[\mathrm{Mo}^{3+}\right]=0.4533 \mathrm{mmol} / 50.00 \mathrm{~mL}=9.066 \mathrm{mM}$.
S16-5. $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
12.34 mL of $0.004321 \mathrm{M} \mathrm{KMnO}_{4}=0.05332 \mathrm{mmol}^{2} \mathrm{MnO}_{4}^{-}$which reacts with
$(5 / 2)(0.05332)=0.1333 \mathrm{mmol}$ of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ which came from
$(2 / 3)(0.1333)=0.08887 \mathrm{mmol}$ of $\mathrm{La}^{3+} .\left[\mathrm{La}^{3+}\right]=0.08887 \mathrm{mmol} / 25.00 \mathrm{~mL}=3.555 \mathrm{mM}$.
S16-6. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 3 \mathrm{HCO}_{2} \mathrm{H}+8 \mathrm{e}^{-}+8 \mathrm{H}^{+}$
glycerol
(average oxidation (oxidation number
number of $\mathrm{C}=-2 / 3$)
of $\mathrm{C}=+2$)
$8 \mathrm{Ce}^{4+}+8 \mathrm{e}^{-} \rightleftharpoons 8 \mathrm{Ce}^{3+}$
$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}+8 \mathrm{Ce}^{4+}+3 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 3 \mathrm{HCO}_{2} \mathrm{H}+8 \mathrm{Ce}^{3+}+8 \mathrm{H}^{+}$
One mole of glycerol requires eight moles of Ce^{4+}.
50.0 mL of $0.0899 \mathrm{M} \mathrm{Ce}^{4+}=4.495 \mathrm{mmol}$
10.05 mL of $0.0437 \mathrm{M} \mathrm{Fe}^{2+}=0.439 \mathrm{mmol}$
Ce^{4+} reacting with glycerol $=4.056 \mathrm{mmol}$
glycerol $=(1 / 8)(4.056)=0.507_{0} \mathrm{mmol}=46.7 \mathrm{mg}$
\Rightarrow original solution $=30.5 \mathrm{wt} \%$ glycerol

S16-7.

One mole of nitrosobenzene reacts with 4 moles of Cr^{2+} and one mole of nitrobenzene reacts with 6 moles of Cr^{2+}. Let $x=\mathrm{mg}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}$ and $24.43-x=\mathrm{mg}$ of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$.
We can write

$$
\begin{aligned}
& \quad \frac{4 x}{107.112}+\frac{6(24.43-x)}{123.111}=\mathrm{mmol} \text { of } \mathrm{Cr}^{2+}=(21.57)(0.05000) \\
& x=9.84 \mathrm{mg}=40.3 \%
\end{aligned}
$$

S16-8. 0.1392 g of $\mathrm{KBrO}_{3}=0.8335 \mathrm{mmol}^{2} \mathrm{BrO}_{3}^{-}$which generates $3(0.8335)=2.501 \mathrm{mmol}$ of Br_{2} according to the reaction $\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
One mole of excess Br_{2} generates one mole of I_{2} by the reaction $\mathrm{Br}_{2}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{Br}^{-}+\mathrm{I}_{2}$ The I_{2} requires 19.18 mL of $0.05000 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{3}^{2-}=0.9590 \mathrm{mmol}$ of $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$. Therefore, there must have been $(1 / 2)(0.9590)=0.4795 \mathrm{mmol}$ of $\mathrm{I}_{2}=0.4795 \mathrm{mmol}$ of excess Br_{2}. The Br_{2} that reacted with acetoacetanilide must have been $2.501-0.4795=2.021 \mathrm{mmol}$ of Br_{2}. Since one mole of Br_{2} reacts with one mole of acetoacetanilide there must have been 2.021 mmol of acetoacetanilide, or $(1 / 2)(2.021)=1.010 \mathrm{mmol}$ of $\mathrm{Be}^{2+}=9.107 \mathrm{mg}$ of Be .

S16-9. Denote the average oxidation number of Bi as $3+b$ and the average oxidation number of Cu as $2+c$.

$$
\mathrm{Bi}_{2}^{3+b} \mathrm{Sr}_{2}^{2+} \mathrm{Ca}_{0.8}^{2+} \mathrm{Y}_{0.2}^{3+} \mathrm{Cu}_{2}^{2+c} \mathrm{O}_{x}
$$

Positive charge $=6+2 b+4+1.6+0.6+4+2 c=16.2+2 b+2 c$
The charge must be balanced by $\mathrm{O}^{2-} \Rightarrow x=8.1+b+c$
The formula mass of the superconductor is $760.37+15.9994(8.1+b+c)$.
One gram contains $1 /[770.14+15.9994(8.1+b+c)]$ moles.
Experiment A: Initial $\mathrm{Cu}^{+}=0.1000 \mathrm{mmol}$; final $\mathrm{Cu}^{+}=0.0522 \mathrm{mmol}$. Therefore 110.6 mg of superconductor consumed $0.0478 \mathrm{mmol} \mathrm{Cu}{ }^{+}$.
$2 \times \mathrm{mmol} \mathrm{Bi}^{5+}+\mathrm{mmol} \mathrm{Cu}^{3+}$ in 110.6 mg superconductor $=0.0478$.
Experiment B: Initial $\mathrm{Fe}^{2+}=0.0500 \mathrm{mmol}$; final $\mathrm{Fe}^{2+}=0.0213 \mathrm{mmol}$. Therefore 143.9 mg of superconductor consumed $0.0287 \mathrm{mmol} \mathrm{Fe}{ }^{2+}$.
$2 \times \mathrm{mmol} \mathrm{Bi}^{5+}$ in 143.9 mg superconductor $=0.0287$.
Normalizing to 1 gram of superconductor gives

Expt A: $2\left(\mathrm{mmol} \mathrm{Bi}^{5+}\right)+\mathrm{mmol} \mathrm{Cu}^{3+}$ in 1 g superconductor $=0.4322$
Expt B: $2\left(\mathrm{mmol} \mathrm{Bi}^{5+}\right)$ in 1 g superconductor $=0.1994$
It is easier not to get lost in the arithmetic if we suppose that the oxidized bismuth is Bi^{4+} and equate one mole of Bi^{5+} to two moles of Bi^{4+}.
Therefore we can rewrite the two equations above as

$$
\begin{align*}
& {\mathrm{mmol} \mathrm{Bi}^{4+}+\mathrm{mmol} \mathrm{Cu}^{3+}} \text { in } 1 \mathrm{~g} \text { superconductor }=0.4332 \tag{1}\\
& \mathrm{mmol} \mathrm{Bi}^{4+} \text { in } 1 \mathrm{~g} \text { superconductor }=0.1994 \tag{2}
\end{align*}
$$

Subtracting Equation 2 from Equation 1 gives
mmol Cu ${ }^{3+}$ in 1 g superconductor $=0.2338$
Equations 2 and 3 tell us that the stoichiometric relationship in the formula of the superconductor is $b / c=0.1994 / 0.2338=0.8529$.

Since 1 g of superconductor contains $0.7894 \mathrm{mmol} \mathrm{Cu}^{3+}$, we can say

$$
\begin{align*}
& \frac{\mathrm{mol} \mathrm{Cu}^{3+}}{\mathrm{mol} \mathrm{solid}}=2 c \\
& \frac{\mathrm{~mol} \mathrm{Cu}^{3+} / \mathrm{mol} \mathrm{solid}}{\text { gram solid } / \mathrm{mol} \mathrm{solid}}=\frac{2 c}{760.37+15.9994(8.1+b+c)} \\
& \frac{\mathrm{mol} \mathrm{Cu}^{3+}}{\text { gram solid }}=\frac{2 c}{770.14+15.9994(8.1+b+c)}=2.338 \times 10^{-4} \tag{4}
\end{align*}
$$

Substituting $b=0.8529 c$ in the denominator of Equation 4 allows us to solve for c :

$$
\begin{aligned}
& \frac{2 c}{770.14+15.9994(8.1+1.8529 c)}=2.338 \times 10^{-4} \Rightarrow c=0.105_{5} \\
& \Rightarrow b=0.8529 c=0.090_{0}
\end{aligned}
$$

The average oxidation numbers are $\mathrm{Bi}^{+3.090} 0$ and $\mathrm{Cu}^{+2.1055}$ and the formula of the compound is $\mathrm{Bi}_{2} \mathrm{Sr}_{2} \mathrm{Ca}_{0.8} \mathrm{Y}_{0.2} \mathrm{Cu}_{2} \mathrm{O}_{8.295}$, since the oxygen stoichiometry derived at the beginning of the solution is $x=8.1+b+c$.

S16-10. Coefficients of the balanced equations are :
(a) $1,1 \rightarrow 1$
(f) $1,1 \rightarrow 1,1,1$
(b) $2,1,2 \rightarrow 1,2,5$
(g) $1,1 \rightarrow 2,1,2$
(c) $1,24,24 \rightarrow 6,6,42,48,1$
(h) $1,5,6 \rightarrow 3,3$
(d) $1,1,1 \rightarrow 1,1$
(i) $1,2,1 \rightarrow 1,1,1$
(e) $3,1,3 \rightarrow 1,6,6$

One mole of Be^{3+} requires 228 moles of thiosulfate.

S16-11. (a)

To balance this reaction we can write

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+5 \mathrm{H}_{2} \mathrm{O} \\
& \begin{array}{l}
\text { glucose }
\end{array} \overbrace{5 \mathrm{HCO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{CO}}^{\rightleftharpoons} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{11}
\end{aligned}+10 \mathrm{H}^{+}+10 \mathrm{e}^{-}
$$

(b)

$$
\begin{aligned}
\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~N}+6 \mathrm{H}_{2} \mathrm{O} & \rightleftharpoons \\
& 5 \overbrace{\mathrm{HCO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{CO}+\mathrm{NH}_{3}}^{\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{O}_{11} \mathrm{~N}+10 \mathrm{H}^{+}+10 \mathrm{e}^{-}} \\
5\left[\mathrm{IO}_{4}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons\right. & \left.\mathrm{IO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}\right] \\
\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{5} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O}+5 \mathrm{IO}_{4}^{-} & \rightarrow 5 \mathrm{HCO}_{2} \mathrm{H}+\mathrm{H}_{2} \mathrm{CO}+\mathrm{NH}_{3}+5 \mathrm{IO}_{3}^{-}
\end{aligned}
$$

(c)

S16-12. For the equilibrium between enzyme (E) and indicator (In) we can write

$$
\begin{aligned}
\mathrm{E}(\mathrm{ox})+2 \mathrm{e}^{-} & \rightleftharpoons \mathrm{E}(\mathrm{red}) & & E^{\circ}(\text { enzyme }) \\
2[\operatorname{In}(\mathrm{red}) & \left.\left.\rightleftharpoons \mathrm{In}(\mathrm{ox})+\mathrm{e}^{-}\right)\right] & & E^{\circ}=-0.187 \\
\cline { 1 - 3 }(\mathrm{ox})+2 \operatorname{In}(\mathrm{red}) & \rightleftharpoons \mathrm{E}(\mathrm{red})+2 \operatorname{In}(\mathrm{ox}) & & E_{3}^{\circ}=E^{\circ}(\text { enzyme })+0.187
\end{aligned}
$$

For the net reaction,

$$
\begin{aligned}
& K=\frac{[\mathrm{E}(\mathrm{red})][\operatorname{In}(\mathrm{ox})]^{2}}{[\mathrm{E}(\mathrm{ox})][\operatorname{In}(\mathrm{red})]^{2}}=\frac{\left(1.80 \times 10^{-5}\right)\left(3.9 \times 10^{-5}\right)^{2}}{\left(4.2 \times 10^{-5}\right)\left(5.5 \times 10^{-5}\right)^{2}}=0.215 \\
& E_{3}^{\circ}=\frac{0.05916}{2} \log K=-0.0197 \mathrm{~V} . \quad E^{\circ}(\text { enzyme })=E_{3}^{\circ}-0.187=-0.207 \mathrm{~V}
\end{aligned}
$$

S16-13. Titration reaction: $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
$0.02046 \mathrm{~m} \mathrm{KMnO}_{4}$ (FM 158.03) contains $0.02046 \mathrm{~mol} \mathrm{KMnO}_{4}$
($=3.233_{3} \mathrm{~g} \mathrm{KMnO}_{4}$) per kg of $\mathrm{H}_{2} \mathrm{O}$.
0.933 g of this titrant contains
(0.933 g solution) $\left(\frac{3.2333 \mathrm{~g} \mathrm{KMnO}_{4}}{1003.2 \mathrm{~g} \text { solution }}\right)=3.00_{7} \mathrm{mg} \mathrm{KMnO}_{4}=19.03 \mu \mathrm{~mol} \mathrm{KMnO}_{4}$.

The concentration of excess, unreacted KMnO_{4} in the pink solution at the end of the titration is given by Beer's law: $\left[\mathrm{KMnO}_{4}\right]=A /(\varepsilon \mathrm{l})$, where A is the absorbance $(0.018), \varepsilon$ is the molar absorptivity $\left(2.45 \times 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$, and 1 is the cuvet pathlength $(1.000 \mathrm{~cm})$.

Using these numbers gives $\left[\mathrm{KMnO}_{4}\right]=7.3_{5} \mu \mathrm{M}$.
If the volume of titrated solution is 500.9 mL , the quantity of unreacted KMnO_{4} is $\left(7.3_{5} \mu \mathrm{M}\right)(0.5009 \mathrm{~L})=3.68 \mu \mathrm{~mol}$.
The quantity of KMnO_{4} consumed by $\mathrm{H}_{2} \mathrm{O}_{2}$ is therefore ($19.03-3.6_{8}$) $=15.35 \mu \mathrm{~mol}$.
From the stoichiometry of the titration reaction, the quantity of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the unknown is $(5 / 2)\left(15.3_{5} \mu \mathrm{~mol}\right)=38.3_{8} \mu \mathrm{~mol}$.
The concentration of unknown is $38.3_{8} \mu \mathrm{~mol} / 0.5000 \mathrm{~L}=76.8 \mu \mathrm{M}$.
You could lower the detection limit by using a lower concentration of standard KMnO_{4} and a cuvet with a longer pathlength. This allows less KMnO_{4} to be delivered and less excess KMnO_{4} to be detected. It might be necessary to withdraw aliquots of the titrated solution near the end point and measure the absorbance to find out when the end point has been reached. That is, the reagents could be so dilute that you will not see the color, even though the spectrophotometer will see absorbance with a sufficiently long pathlength cuvet.

