Phys 2107 Physics for Engineers I

	Test I	03/03/2008	5:30-6:30 p.m.		
ID:	Name:		Sec:	Score:	

Please check that you have 5 multiple-choice questions and 2 classical problems. Total Score 50

1. Multiple –choice questions (15 points)

1a. A projectile is shot vertically upward with a given initial velocity. It reaches a maximum height of 100 m. If, on a second shot, the initial velocity is doubled then the projectile will reach a maximum height of:

- 70.7 m A)
- B) 141.4 m
- C) 200 m
- D) 241 m

1b. At a location where $g = 9.8m/s^2$, an object is thrown vertically down with an initial speed of 1.00 m/s. After 5.00 s the object will have traveled:

- 125 m
- (B) 127.5 m
- C) 245 m
- D) 250 m
- E) 255 m

1c. Vectors \vec{A} and \vec{B} each have magnitude L. When drawn with their tails at the same point, the angle between them is 30°. The value of scalar product $\vec{A} \cdot \vec{B}$ is:

- A)

- zero B) L^2 C) $\frac{\sqrt{3}L^2}{2}$ D) $2L^2$ E) none of these

1d. A projectile is fired over level ground with an initial velocity that has a vertical component of 20 m/s and a horizontal component of 30 m/s. Using g = 10 m/s2, the distance from launching to landing points (range) is:

- A)
- 40 m
- B) 60 m
- C) 80 m
- D) 120 m
- E) 180 m

1e. A 70-kg man stands in an elevator that has a downward acceleration of $1.8m/s^2$. The force exerted by him on the floor is about:

- zero A)
- B) 90 N
- (C)) 560 N
- D) 880 N E) 1010 N

Classical Problems

- 2. Let $\vec{r} = x(t)\hat{i} + y(t)\hat{j}$ represents the position vector of a particle where $x(t) = 2 3t + 2t^2$ and $y(t) = 2t t^2$ are measured in meters and time in second.
- (a) Calculate the average velocity in unit vector notation between t = 2s and t = 3s.
- (b) Find the position vector in unit vector notation when the particle reaches its maximum y coordinate.
- (c) Find the velocity in unit vector notation when x = 1m.
- (d) When is the velocity perpendicular to the acceleration? (17points)

(3)
$$\vec{r}(3) = (2-9+18)\hat{i} + (6-9)\hat{\delta} = 11\hat{i} - 3\hat{\delta}$$

 $\vec{r}(2) = (2-6+8)\hat{i} + (4-4)\hat{j} = 4\hat{i}$
 $\Delta \vec{r} = \vec{r}(3) - \vec{r}(1) = 7\hat{i} - 3\hat{\delta}, \quad \Delta t = 3-2=1$
 $\vec{V}_{aug} = \frac{\Delta \vec{r}}{\Delta t} = 7\hat{i} - 3\hat{\delta}, \quad M/s$

(b)
$$V_y = \frac{dy}{dt} = 0 \implies 2-2t = 0, t = 18$$

$$\vec{r}(1) = (2-3+2)\hat{i} + (2-1)\hat{\delta}$$

$$\vec{r}(1) = \hat{i} + \hat{\delta}$$

(c)
$$\vec{V} = (-3+4t)\hat{i} + (2-2t)\hat{s}$$

(3)
$$\sqrt{(1)} = \hat{i}$$
 (3) $\sqrt{(0.5)} = -\hat{i} + \hat{j}$

$$(d) \quad \vec{a} = 4\vec{i} - 2\hat{s}$$

(4)
$$\vec{a} \cdot \vec{v} = 0 \implies -12 + 16t - 4 + 4t = 0$$

 $20t = 16 \implies [t = 0.8s]$

- 3. Two blocks of masses $m_1 = 2kg$, $m_2 = 4kg$ are connected to each other by a cord over a massless pulley as shown in the figure where the angles of the inclined planes with horizontal plane are $\theta_1 = 53^\circ$, $\theta_2 = 30^\circ$. A horizontal force \vec{F} is applied to the block of mass 4kg to keep the system at rest. The system is released from rest by removing the force \vec{F} when the block of mass 4kg is 1.5m from the ground.
- (a) Find the magnitude of the force \vec{F} and the normal force on block of mass m_2 .
- (b) Calculate the magnitude of the acceleration of the system and the tension T after the force \vec{F} is removed
- (c) Find the speeds of the blocks just before the 4kg block hits the ground.

ree-body diagrams:

