Sultan Qaboos University Physics Department, College of Science
 Physics 2107: Physics for Engineering I Spring Semester 2007-Test II

Monday 9 $^{\text {th }}$ April 2007
Time: 5:00-6:00 pm

ID No.:	1	2	3	Total
Name:				

$$
\begin{array}{|l|l|}
\hline \text { Full Mark:40 points } & \begin{array}{l}
\text { Please check that your examination paper has 3 Questions } \\
\text { Do not write your section number }
\end{array} \\
\hline
\end{array}
$$

1- Blocks A and B shown below have weights of 44 N and 22 N respectively. The coefficient of the static friction between block A and the table is 0.20 , while the coefficient of the kinetic friction between them is 0.15 .
a) What is the minimum magnitude of the force F that will prevent block A sliding to the right.
b) If the force F is suddenly removed
i) Determine the acceleration of block A
ii) Determine the tension in the rope.

2- A spring with spring constant $300 \mathrm{~N} / \mathrm{m}$ is at the top of a 37° frictionless inclined plane. A 2.0 kg ball is pushed against the spring and compresses it by 80.0 cm . In this position it is 20.0 m above the ground and momentarily at rest. After the ball is released and reaches the bottom of the inclined plane, it travels straight up as shown in the figure.
a) What is the work done by the spring force?
(14 points)
b) What is the speed of the ball at the bottom of the inclined?
c) What is the maximum height reached by the ball?

3- The figure below shows an approximate plot of force magnitude versus time during the collision of a 58 g rubber ball with a wall. The initial velocity of the ball is $34 \mathrm{~m} / \mathrm{s}$ perpendicular to the wall; it rebounds directly back with the same speed, also perpendicular to the wall.
a) What is the average force $\mathrm{F}_{\text {ave }}$ on the ball from the wall during the collision?
b) What is the maximum force $\mathrm{F}_{\max }$ on the ball from the wall during the collision?

