SULTAN QABOOS UNIVERSITY DEPARTMENT OF MATHEMATICS AND STATISTICS
 09 January 2010
 MATH 2107 CALCULUS I
 Fall 2009 Final Examination (Version I)
 (Time allowed: 60 minutes)

NAME: \qquad ID\#: \qquad Section: \qquad

Instructions:

- This exam contains 13 pages and 18 questions. The empty pages at the end are for rough work and will not be marked.
- Write your name, ID number and Section number on this page. Write your ID number at the top of each sheet.
- Attempt all questions, writing your answer in the space below the statement of the question. For questions $1-8$ show all your work.
- Do not give more than one answer to a question.
- For Multiple Choice Questions, Circle the correct answer.
- Please do not separate the pages of this booklet.

DO NOT WRITE IN THIS BOX!

Question	Max Marks	Score
$\mathbf{1}$	9	
$\mathbf{2}$	10	
$\mathbf{3}$	11	
$\mathbf{4}$	10	
$\mathbf{5}$	15	
$\mathbf{6}$	$\mathbf{7}$	
$\mathbf{7}$	9	
$\mathbf{8}$	9	
$\mathbf{9}-\mathbf{1 8}$	20	
TOTAL	100	

1. (a) 3 marks Find $\lim _{x \rightarrow 0^{-}} \frac{3 \sin x}{1-\cos (2 x)}$
(b) 6 marks Let $f(x)= \begin{cases}\frac{\sin (2 x)}{x}, & x<0 \\ a, & x=0 \\ b^{2} e^{x}+b, & x>0 .\end{cases}$

Find values of the constants a and b for which f is continuous at $x=0$.
2. (a) 6 marks Use the definition of the derivative to show that

$$
f(x)= \begin{cases}2 x+2, & x \leq 1 \\ 4 \sqrt{x}, & x>1\end{cases}
$$

is differentiable at $x=1$.
(b) 4 marks Use the properties of logarithms to simplify, and then find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if

$$
y=\ln \left(\sqrt{\frac{\sin x}{1-2 x}}\right)
$$

3. (a) 7 marks Given that the function $f(x)=x^{5}+3 x^{3}+x$ has the inverse $g(x)$, find
(i) $g^{\prime}(5)$ and
(ii) $\frac{\mathrm{d}}{\mathrm{d} x}[f(2 g(x))]$ at $x=5$.
(b) 4 marks Use the Mean Value Theorem to show that $\left|\tan ^{-1} a\right|<|a|$ for all $a \neq 0$.
4. 10 marks An open box is to be made from a 24 cm by 24 cm square piece of cardboard by cutting out squares of equal size from the four corners and folding up the sides. What should be the dimensions of the squares to obtain a box with the largest volume?
5. 15 marks Given $f(x)=\frac{1}{(x-1)(x-2)}, \quad f^{\prime}(x)=\frac{3-2 x}{(x-1)^{2}(x-2)^{2}}$, and

$$
f^{\prime \prime}(x)=\frac{2\left(3 x^{2}-9 x+7\right)}{(x-1)^{3}(x-2)^{3}}, \quad \text { find: }
$$

(a) x and y intercepts, (b) vertical asymptotes and the behaviour of f near the vertical asymptotes, (c) horizontal asymptotes, (d) critical numbers, (e) intervals in which f increases and decreases, (f) local extrema, (g) concavity and the x-coordinates of any inflection points. Then sketch the graph of f in the next page $\# 7$.

Name:

6. 7 marks Use the limit of Riemann sum to compute the area under the curve $y=16-x^{2}$ over the interval $[0,4]$.
7. $4+5$ marks Evaluate the following integrals using suitable substitutions:
(a) $\int \frac{9}{x(2+3 \ln x)^{4}} \mathrm{~d} x$
(b) $\int_{2}^{5} \frac{x-2}{\sqrt{x-1}} \mathrm{~d} x$
8. (a) 6 marks Show that $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$ for all x.
(b) 3 marks Given $y=x \sinh x$, find $y^{\prime \prime}(0)$.

The remainder of this exam consists of Multiple Choice questions. Circle the correct answer for each question. No partial credit will be given. (2 marks for each question)
9. The exact value of $\tanh (\ln 3)$ is
(A) $\frac{5}{4}$
(B) 0
(C) $\frac{4}{5}$
(D) none of them
10. Let f be a differentiable function of x, and $g(x)=f(b+m x)+f(b-m x)$, where b and m are non-zero constants. Then $g^{\prime}(0)$ is
(A) 1
(B) 0
(C) b
(D) m
11. If $v(t)=2 \sin t$ is the velocity of a particle at time t, then the average value of v on $0 \leq t \leq \frac{\pi}{2}$ is
(A) $\frac{4}{\pi}$
(B) $\frac{1}{\pi}$
(C) 2
(D) none of them
12. $\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x-1-e^{x}}$ is
(A) $-\infty$
(B) 0
(C) ∞
(D) none of them
13. If the function $f(x)$ has critical numbers at $x=-1, x=0, x=1$ and if $f^{\prime \prime}(-1)<0$, $f^{\prime \prime}(0)=0, f^{\prime \prime}(1)>0$, then the graph of $y=f(x)$ has a local minimum at
(A) $x=0$
(B) $x=-1$ and $x=1$
(C) $x=-1$
(D) $x=1$
14. $\lim _{x \rightarrow 1} \frac{\int_{1}^{x} \sqrt{t^{5}+8} \mathrm{~d} t}{x-1}$ is
(A) 0
(B) 3
(C) 1
(D) $2 \sqrt{2}$
15. The graph of $y=2 x+x^{4 / 3}$ is concave up in the interval
(A) $(-\infty, 0)$
(B) $(-\infty, 0) \cup(0, \infty)$
(C) $(0, \infty)$
(D) none of them
16. If $g(x)=x \ln (-x)$, then $g^{\prime}(-e)$ is
(A) 0
(B) $1-\frac{1}{e}$
(C) 2
(D) none of them
17. If $f(x)=7+g(x)$ for $3 \leq x \leq 5$, and $\int_{3}^{5} g(x) \mathrm{d} x=-4$ then $\int_{3}^{5}[f(x)+g(x)] \mathrm{d} x$ is
(A) -1
(B) 6
(C) 10
(D) 3
18. $\sum_{i=0}^{30}(3+i)$ is
(A) 555
(B) 558
(C) 468
(D) none of them

This page is for rough work. It will not be graded.

