Part I: Multiple Choice Questions

- Each Multiple Choice Question is worth 2 marks for a total of 14 marks out of 50.
 - 1. Simplify $\left(4 \frac{5}{x}\right) \div \left(5 + \frac{3}{x}\right)$ (A) $\frac{4 - 5x}{5 + 3x}$ (B) $\frac{5x + 3}{4x - 5}$ (C) $\frac{4x^2 - 5}{5x^2 + 3}$ (D) $\frac{4x - 5}{5x + 3}$ 2. Rationalize the numerator $\frac{\sqrt{6} - \sqrt{3}}{3}$ (A) $\frac{1}{3}$ (B) $\frac{1}{\sqrt{6} + \sqrt{3}}$ (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{3}{\sqrt{6} - \sqrt{3}}$ 3. Which of the following lines is perpendicular to 2x - 3y + 5 = 0: (A) 2x + 3y - 1 = 0 (B) 3x - 2y + 5 = 0 (C) -4x + 6y - 5 = 0 (D) 6x + 4y - 1 = 0
 - 4. If the graph of f(x) = √x is shifted to the left 2 units, reflected in the x-axis, and shifted upward 3 units, then the equation of the final transformed graph is:
 (A) 3 √x 2
 (B) 2 √x 3
 (C) 3 √x + 2
 (D) 2 √x + 3
 - 5. The graph of the equation $x^2y^4 3xy^2 = 2$ is symmetric about the:

(A)
$$x$$
- axis (B) y - axis (C) the origin (D) None

- 6. The center of the circle $x^2 + y^2 4x + 6y = 9$ is: (A) (2, -3) (B) (-2, 3) (C) (-4, 6) (D) (4, -6)
- 7. The inverse of f(x) = 2x 3 is: (A) $\frac{1}{2x - 3}$ (B) $\frac{x + 3}{2}$ (C) 2x + 3 (D) -(2x - 3)

Part II: Short Answer Questions

• This part is worth 36 marks out of 50.

- 1. (7 marks) Find all real solutions of the equation $\sqrt{x + \sqrt{7 x}} = 1$.
- **2.** (6 marks) Solve the inequality $\frac{4x+1}{x+2} \ge 2$ and write your answer in interval form.
- **3.** (7 marks) Ali and Said have been hired to do a specific job. It takes 3 hours and 30 minutes for Said to do the job alone. Working together, they can do in 40% of the time it takes Ali working alone. How long does it take Ali to do the job alone? Write your answer in hours and minutes.
- 4. (6 marks) Let $f(x) = -2x^2 + 8x + 3$.
 - (a) Write f in standard form.
 - (b) Find the range of f. Write your answer in interval form.
 - (c) What is the maximum value of *f*?
- **5.** (4 marks) Let $f(x) = x^2 1$ and $g(x) = \sqrt{4 x}$. Find $(f \circ g)(x)$ and its domain. Write your answer in interval form.
- **6.** (6 marks) Sketch the graph of g

$$g(x) = \begin{cases} -2 - x & \text{if } x < -2 \\ 4 - x^2 & \text{if } -2 \le x < 0 \\ 2 & \text{if } x \ge 0 \end{cases}$$

and evaluate g(-3), g(-1), g(0), $g(a^2)$ where a is a real number.

Part I: Multiple Choice Questions

- Each Multiple Choice Question is worth 2 marks for a total of 10 marks out of 50.
- Circle the appropriate answer and write it in the table below.
 - **1.** Evaluate $\sqrt{-10}\sqrt{-40}$: (A) 20 **(B)** −20 **(C)** 20*i* **(D)** -20*i*
 - **2.** The remainder in division of $P(x) = 2x^5 3x^4 + x^2 + 6$ by (x + 1) is: (A) -4 (B) -1 (C) 2**(A)** −4 **(D)** 6
 - **3.** The domain of the function $f(x) = \frac{1}{\ln(x^2 + 1)}$ is: (C) $(-\infty,\infty)$ (A) $(0, \infty)$ **(B)** $(-\infty, 0) \cup (0, \infty)$ **(D)** $(1,\infty)$

4. If $\cos \theta = -\frac{5}{\sqrt{61}}$ and θ is in quadrant II then $\tan \theta$ is: (A) $-\frac{6}{-}$ (B) $\frac{6}{5}$ (C) $-\frac{6}{\sqrt{61}}$

- (**D**) $\frac{6}{\sqrt{61}}$
- 5. The exact value of $\sin\left(\frac{35\pi}{6}\right)$ is: (A) $\frac{\sqrt{3}}{2}$ (B) $-\frac{\sqrt{3}}{2}$ (**B**) $-\frac{\sqrt{3}}{2}$ (C) $\frac{1}{2}$ (**D**) $-\frac{1}{2}$

Part II: Short Answer Questions

- This part is worth 40 marks out of 50. Simplify your answer when possible.
- To get full marks you have to show all necessary work.
- Write your answer in the space provided after the question.
 - **1.** (6 marks) Solve for $x: 16^x 4^{x+1} = 12$.
 - **2.** (8 marks) Sketch the graph of the rational function $r(x) = \frac{2x^2 x 3}{x^2 + x 6}$, showing all intercepts and asymptotes.
 - **3.** (**6 marks**) The frog population in pond grows exponentially. The current population is 70 frogs, and the relative growth rate is 24% per year.
 - (a) Find a function that models the population after t years.
 - (b) Find the frog population after 5 years.
 - (c) Find the number of years required for the frog population to reach 300.
 - 4. (7 marks) Solve the inequality $\log_2(4-x) + \log_2(x+2) \le 3$ and write your answer in interval form.
 - 5. (7 marks) Hamdi estimated the angle of elevation to the top of clock tower to be 30° . After walking 40 meter closer to the tower, he found that the angle of elevation to the top of the clock tower was 45° . Find the height of the clock tower.
 - 6. (6 marks) Let $P(x) = x^4 3x^3 x^2 + 13x 10$.

(a) Factor P into linear and irreducible quadratic factors with real coefficients.

(b) Factor P completely into linear factors with complex coefficients.

M1106 - Final Exam - Fall 2009

1. Simplify: $(x + y) (x^{-1} + y^{-1})^{-1}$ (A) 1 (B) $\frac{1}{xy}$ (C) $(x + y)^2$ (D) xy (E) None of these					
	(A) 1	(B) $\frac{1}{xy}$	(C) $(x+y)^2$	(D) <i>xy</i>	(E) None of these
2. The equation of the line which passes through the origin and perpendicular to the line $2x - 4y = 5$ is:					
	(A) $y = 2x$	(B) $y = \frac{1}{2}x$	(C) $y = -\frac{1}{2}x$	(D) $y = -2x$	(E) None of these
3.	The radius of the (A) 9	circle $x^2 - 2x + y$ (B) 8	$x^{2} + 8y - 8 = 0$ is: (C) 3	(D) 17	(E) None of these
4.	4. If the graph of $f(x) = \sqrt[3]{x}$ is shifted 3 units to the left, reflected in the <i>x</i> -axis, and shifted upward 4 units, the equation of the final graph is: (A) $y = 4 - \sqrt[3]{x-3}$ (B) $y = 4 - \sqrt[3]{x+3}$ (C) $y = 3 - \sqrt[3]{x-4}$ (D) $y = 3 - \sqrt[3]{x+4}$ (E) None of these				
5.	The imaginary part (A) 10 <i>i</i>	rt of $(3-2i)(1+4)$ (B) -8	4 <i>i</i>) is: (C) 10	(D) 8 <i>i</i>	(E) None of these
6.	The solution of the equation $\log_2(1+2^x) = -1$ is:				
	(A) $-\frac{1}{2}$	(B) 0	(C) −1	(D) No solution	(E) None of these
7.	The amplitude of (A) 1	$y = 4\sin 2x - 3\cos (\mathbf{B}) 5$	as 2x is: (C) 7	(D) 25	(E) None of these
8.	The domain of the (A) $(0,\infty)$		$\log_x 10 \text{ is:}$ (C) $(0,1) \cup (1,$	∞) (D) $(1,\infty)$	(E) None of these
9.	The maximum val (A) 1	ue of $f(x) = -x^2$ (B) -1	+4x-5 is: (C) 2	(D) −2	(E) None of these
10. If $\cos(\theta) = -\frac{1}{4}$ and $\frac{\pi}{2} < \theta < \pi$, then $\sin(2\theta)$ is:					
	(A) $\frac{15}{16}$	(B) $\frac{\sqrt{15}}{8}$	(C) $-\sqrt{15}$	(D) $-\frac{\sqrt{15}}{8}$	(E) None of these
11. Write the expression $\sin(\tan^{-1} x)$ as an algebraic function of <i>x</i> :					
	(A) $\frac{x}{\sqrt{x^2+1}}$	(B) $\frac{x}{\sqrt{x^2-1}}$	(C) x	(D) $\sqrt{1-x^2}$	(E) None of these

Part II: Short Answer Questions

- This part has 12 questions for a total of 78 marks. To get full marks you have to show all necessary work.
- Write your answer in the space provided after the question. Simplify your answer as far as possible.
 - 1. (7 marks) A hot cup of coffee cools according to Newton's Law of cooling $T(t) = 35 + 50e^{-0.04t}$, where the temperature T is measured in $^{\circ}C$ and time t in minutes.
 - (a) What is the initial temperature of the coffee?
 - (b) Find the temperature of the coffee after 10 minutes.
 - (c) After how long will the temperature be 65° ?
- 2. (8 marks) Find the amplitude, period and phase shift of the function $g(x) = -2\sin\left(\frac{x}{2} + \frac{\pi}{4}\right)$, then sketch the graph of q in one complete period.
- **3.** (5 marks) For $P(x) = x^4 + 2x^3 + 4x^2 2x 5$ list all possible rational zeros and find all real and complex zeros.
- 4. (7 marks) Sketch the graph of $P(x) = x (x+1)^2 (x-1)^3$ clearly indicating all y- and x-intercepts and the end behavior.

5. (7 marks) Verify the identities: (a) $\frac{\sin 2x}{1 + \cos 2x} = \tan x$ (b) $\sin (\sin^{-1} x + \cos^{-1} x) = 1$

- 6. (8 marks) Sketch the graph of the function $r(x) = \frac{x^2 + 3x}{x+1}$. Find vertical, horizontal and slant asymptotic equation $r(x) = \frac{x^2 + 3x}{x+1}$. totes if any. Show clearly all y- and x-intercepts and the behavior near asymptotes.
- 7. (6 marks) Find exact solution(s) of $\log_2(2+x) + \log_3 9 = 2\log(2-x)$
- 8. (5 marks) Solve the inequality $\frac{2}{x-2} \le \frac{1}{x}$ and write your answer in interval form.
- 9. (5 marks) A man drove from A to B at a speed 120 km/h. On the way back, he drove at 90 km/h. The total time of the journey was 4 hours and 40 minutes. Find the distance between A and B.
- **10.** (7 marks) Let $f(x) = \frac{1}{x^2 1}$ and $g(x) = \sqrt{3 x}$. (a) Find $(f \circ g)$ and its domain in interval form (b) Find q^{-1}
- 11. (7 marks) Find exact solutions of $\cos x = \sin 2x$ for $x \in [0, 2\pi)$.
- 12. (6 marks) A helicopter is flying directly above a straight highway. Two cars, that are 600 m apart, move on the highway on both sides of the helicopter. The angle of depression to the cars is determined to be 40^0 and 80^0 . How far is each car from the helicopter?