Sultan Qaboos University College of Science, Department of Mathematics and Statistics MATH 3171-Linear Algebra and Multivariate Calculus for Engineers Spring 2010, Homework

To be submitted on 12 April 2010 during the class time and will be assessed by a Quiz

Solve the following 10 problems in details. No photocopy or a typed version will be accepted

- 1. Let A be the matrix $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$. Find P(A) if $P(x) = \lambda x^2 x + 1$ where λ is the first digit of your student ID.
- 2. For which values of *a* will the following system have no solutions? Exactly one solution? Infinitely many solutions?

$$x + 2y - 3z = 4$$

$$3x - y + 5z = 2$$

$$4x + y + (a^{2} - 14)z = a + 2.$$

- 3. Consider the matrix $A = \begin{bmatrix} 3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3 \end{bmatrix}$.
 - (a) Find det(A) and rank(A).
 - (b) What can be said about the linear dependence and independence of the row vectors
 - $\begin{bmatrix} 3 & 5 & -2 & 6 \end{bmatrix}$, $\begin{bmatrix} 1 & 2 & -1 & 1 \end{bmatrix}$, $\begin{bmatrix} 2 & 4 & 1 & 5 \end{bmatrix}$ and $\begin{bmatrix} 3 & 7 & 5 & 3 \end{bmatrix}$? Justify your answer.
- 4. Solve the following system for x, y, and z by using Cramer's rule;

$$\frac{1}{x} + \frac{2}{y} - \frac{4}{z} = \lambda$$
$$\frac{2}{x} + \frac{3}{y} + \frac{8}{z} = 0$$
$$-\frac{1}{x} + \frac{9}{y} + \frac{10}{z} = 5$$

where λ is the first digit of your student ID.

5. Express the following system as $A\mathbf{X} = \mathbf{b}$. Hence solve it by calculating the inverse of the coefficient matrix

$$x + 3z = \lambda$$

$$3x + 4y - z = 3 \text{ where } \lambda \text{ is the first digit of your student ID.}$$

$$2x + 5y - 4z = 1$$

6. Find all the values of a, b, and c for which A is skew-symmetric

$$A = \begin{bmatrix} 0 & a - 2b + 2c & 2a + b + c \\ 3 & 0 & a + c \\ 0 & -2 & 0 \end{bmatrix}.$$

7. Find a nonsingular matrix *P* that reduces $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$ to a diagonal matrix *D*. Verify your results by calculating PD = AP.

- 8. Let A (1,1,1), B (0,2,2), C (3,11,3), and D(3,3,10).
 (i) Find the angles (in degrees) of the triangle with vertices A , B and C .
 - (ii) Find an equation of the plane passing through the points A, B and C.
 - (iii) Find the volume of the parallelepiped with vertices A, B, C and D.
- 9. (i) Let $\mathbf{a} = [3,1,-2]$, $\mathbf{b} = [-5,7,0]$, and $\mathbf{c} = [4,-6,0]$. Find $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$, $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$.
 - (ii) Let $\mathbf{u}(t) = [u_1(t), u_2(t), u_3(t)], \mathbf{v} = [v_1(t), v_2(t), v_3(t)], \text{ and } \mathbf{w} = [w_1(t), w_2(t), w_3(t)].$ Prove that $(\mathbf{u} \ \mathbf{v} \ \mathbf{w})' = (\mathbf{u}' \ \mathbf{v} \ \mathbf{w}) + (\mathbf{u} \ \mathbf{v}' \ \mathbf{w}) + (\mathbf{u} \ \mathbf{v} \ \mathbf{w}')$ where prime denotes differentiation w. r. to t.

(iii) Let
$$f(x, y, z) = \ln(x^3y^4z^2 + xyz) - \sin(xyz) + e^{x-y-z}$$
. Find $\frac{\partial f}{\partial x}(1,1,1), \frac{\partial f}{\partial y}(1,1,1), \frac{\partial f}{\partial y}(1,1,1), \frac{\partial f}{\partial z}(1,1,1)$.

- 10. (i) Find the tangent vector and the equation of the tangent line to the curve $\mathbf{r}(t) = \lambda \cos t \mathbf{i} \lambda \sin t \mathbf{j} + 4t \mathbf{k}$ at $P : (0, -\lambda, 2\pi)$ where λ is the first digit of your student ID.
 - (ii) Find the length of the cycloid $\mathbf{r} = \lambda [t \sin t, 1 \cos t]$ from t = 0 to $t = 2\pi$ where λ is the first digit of your student ID.