Sultan Qaboos University

College of Science, Department of Mathematics and Statistics MATH 3171-Linear Algebra and Multivariate Calculus for Engineers Spring 2010, Homework

To be submitted on 12 April 2010 during the class time and will be assessed by a Quiz
Solve the following 10 problems in details. No photocopy or a typed version will be accepted

1. Let A be the matrix $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$. Find $P(A)$ if $P(x)=\lambda x^{2}-x+1$ where λ is the first digit of your student ID.
2. For which values of a will the following system have no solutions? Exactly one solution? Infinitely many solutions?

$$
\begin{aligned}
& x+2 y-3 z=4 \\
& 3 x-y+5 z=2 \\
& 4 x+y+\left(a^{2}-14\right) z=a+2
\end{aligned}
$$

3. Consider the matrix $A=\left[\begin{array}{cccc}3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3\end{array}\right]$.
(a) Find $\operatorname{det}(A)$ and $\operatorname{rank}(A)$.
(b) What can be said about the linear dependence and independence of the row vectors $\left[\begin{array}{llll}3 & 5 & -2 & 6\end{array}\right],\left[\begin{array}{llll}1 & 2 & -1 & 1\end{array}\right],\left[\begin{array}{llll}2 & 4 & 1 & 5\end{array}\right]$ and $\left[\begin{array}{llll}3 & 7 & 5 & 3\end{array}\right]$? Justify your answer.
4. Solve the following system for x, y, and z by using Cramer's rule;

$$
\begin{aligned}
& \frac{1}{x}+\frac{2}{y}-\frac{4}{z}=\lambda \\
& \frac{2}{x}+\frac{3}{y}+\frac{8}{z}=0 \\
& -\frac{1}{x}+\frac{9}{y}+\frac{10}{z}=5
\end{aligned}
$$

where λ is the first digit of your student ID.
5. Express the following system as $A \mathbf{X}=\mathbf{b}$. Hence solve it by calculating the inverse of the coefficient matrix

$$
\begin{aligned}
& x \quad+3 z=\lambda \\
& 3 x+4 y-z=3 \text { where } \lambda \text { is the first digit of your student ID. } \\
& 2 x+5 y-4 z=1
\end{aligned}
$$

6. Find all the values of a, b, and c for which A is skew-symmetric

$$
A=\left[\begin{array}{ccc}
0 & a-2 b+2 c & 2 a+b+c \\
3 & 0 & a+c \\
0 & -2 & 0
\end{array}\right]
$$

7. Find a nonsingular matrix P that reduces $A=\left[\begin{array}{ccc}0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3\end{array}\right]$ to a diagonal matrix D. Verify your results by calculating $P D=A P$.
8. Let $A(1,1,1), B(0,2,2), C(3,11,3)$, and $D(3,3,10)$.
(i) Find the angles (in degrees) of the triangle with vertices A, B and C.
(ii) Find an equation of the plane passing through the points A, B and C.
(iii) Find the volume of the parallelepiped with vertices A, B, C and D.
9. (i) Let $\mathbf{a}=[3,1,-2], \mathbf{b}=[-5,7,0]$, and $\mathbf{c}=[4,-6,0]$. Find $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}, \mathbf{a} \times(\mathbf{b} \times \mathbf{c})$.
(ii) Let $\mathbf{u}(t)=\left[u_{1}(t), u_{2}(t), u_{3}(t)\right], \mathbf{v}=\left[v_{1}(t), v_{2}(t), v_{3}(t)\right]$, and $\mathbf{w}=\left[w_{1}(t), w_{2}(t), w_{3}(t)\right]$. Prove that $\left(\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}\end{array}\right)^{\prime}=\left(\begin{array}{lll}\mathbf{u}^{\prime} & \mathbf{v} & \mathbf{w}\end{array}\right)+\left(\begin{array}{lll}\mathbf{u} & \mathbf{v}^{\prime} & \mathbf{w}\end{array}\right)+\left(\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}^{\prime}\end{array}\right)$ where prime denotes differentiation w. r. to t.
(iii) Let $f(x, y, z)=\ln \left(x^{3} y^{4} z^{2}+x y z\right)-\sin (x y z)+e^{x-y-z}$. Find $\frac{\partial f}{\partial x}(1,1,1), \frac{\partial f}{\partial y}(1,1,1)$, $\frac{\partial f}{\partial z}(1,1,1)$.
10. (i) Find the tangent vector and the equation of the tangent line to the curve

$$
\mathbf{r}(t)=\lambda \cos t \mathbf{i}-\lambda \sin t \mathbf{j}+4 t \mathbf{k} \text { at } P:(0,-\lambda, 2 \pi)
$$

where λ is the first digit of your student ID.
(ii) Find the length of the cycloid $\mathbf{r}=\lambda[t-\sin t, 1-\cos t]$ from $t=0$ to $t=2 \pi$ where λ is the first digit of your student ID.

