SULTAN QABOOS UNIVERSITY – COLLEGE OF SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS

SPRING- 2010 FINAL EXAMINATION

MATH 3171 - LINEAR ALGEBRA AND MULTIVARIATE CALCULUS FOR ENGINEERS

TIME ALLOWED: 150 MINUTES TOTAL MARKS: 80

SHOW ALL WORK FOR FULL CREDIT

- $x + y + 2z = \alpha$ 1. Consider the system of equations $x + z = \beta$ $2x + y + 3z = \gamma$
 - (a) [7 Marks] Reduce the augmented matrix of the given system to the echelon form and:
 - (i) determine a condition on the constants α , β , and γ for which solution of the system exits;
 - (ii) hence find the solution of the given system.
 - (b) [1 Mark] Find the rank of the coefficient matrix of the given system.
 - (c) [2 Marks] Determine whether the row vectors $\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 2 & 1 & 3 \end{bmatrix}$ of the coefficient matrix are linearly independent or not. Justify your answer.
- **2.** (a) **[3 Marks]** Find det(A) if $(I + 2A)^{-1} = \begin{bmatrix} -1 & 2 \\ 4 & 5 \end{bmatrix}$.
 - (b) **[8 Marks]** Given a matrix $B = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & -2 \\ 6 & -3 & 1 \end{bmatrix}$.
 - (i) Find the inverse of B, if it exists.
 - (ii) Hence find X if BX = D where $D = \begin{bmatrix} 16 \\ 0 \\ 16 \end{bmatrix}$.
 - (c) [3 Marks] Prove that the determinant of a unitary matrix has absolute value 1.
- **3.** (a) [2 Marks] Prove that if X is an eigenvector for both of the matrices A and B, then X is also an eigenvector of the matrix A + B.
 - (b) [7 Marks] Find the eigenvalues and the corresponding eigenvectors of $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$.
 - (c) [3 Marks] Diagonalize A if possible.

4. (a) [3 Marks] Find $\frac{\partial w}{\partial u}$ if $w = \frac{1}{8}(x^2 + y^2 + z^2)$, $x = u^2 + v^2$, $y = u^2 - v^2$, and z = 2uv.

Write your answer in terms of u and v.

- (b) [3 Marks] Given $f(x, y, z) = 3x^2 4y^2 + z^2 12$.
 - (i) At P:(2,1,2) along what direction will the change of f be maximum?
 - (ii) Find the maximum change in f at P:(2,1,2).
- (c) [2 Marks] Consider the vector field $\mathbf{F}(x, y, z) = [x^2yz, -xy^2z, 5x + z]$. Explain why \mathbf{F} is not the curl of another vetor field \mathbf{G} .
- (d) **[5 Marks]** Let f(x, y, z) = x z and $\mathbf{v}(x, y, z) = [y, z, 2x]$, verify that $\operatorname{curl}(f \mathbf{v}) = \nabla f \times \mathbf{v} + f \operatorname{curl}(\mathbf{v})$.
- **5.** (a) [3 Marks] Find the arc length of the curve $\mathbf{r}(t) = a\cos^3 t \,\mathbf{i} + a\sin^3 t \,\mathbf{j}$, $0 \le t \le \frac{\pi}{2}$.
 - (b) [6 Marks] Find a potential of the vector field $\mathbf{F} = [2xy + \cos x, x^2, 1]$ if it exists.
- **6.** (a) [3 Marks] If $\mathbf{r}(u, v) = \cos u \cos v \, \mathbf{i} + (2 + \sin u \cos v) \, \mathbf{j} + (1 + \sin v) \, \mathbf{k}$; $0 \le u \le 2\pi$, $-\frac{\pi}{2} \le v \le \frac{\pi}{2}$ represents some surface parametrically then find the equation of this surface in the cartesian coordinate system.
 - (b) [7 Marks] Compute the flux $\iint_S \mathbf{F.n} \, dA$ of water through the first octant of the surface S: x+2y+z=4 if the velocity vector is $\mathbf{v} = \mathbf{F} = [y, z, x]$, speed being measured in meter/sec. (Density of water is 1 ton/meter³).
- 7. (a) [6 Marks] Evaluate the line integral $\int_C \mathbf{F} \cdot \mathbf{r}'(s) \, ds$ by Stokes's theorem where $\mathbf{F} = [3y, 8x, 3y]$ and C is the circle: $x^2 + y^2 = 16$, z = 4, oriented counterclockwise.
 - (b) **[6 Marks]** Use Gauss divergence theorem to evaluate $\iint_S \mathbf{F.n} \, dA$ for the vector field $\mathbf{F} = [2x^3, -2x^2y, x^2z]$ and the surface $S: x^2 + y^2 = 4$, $|z| \le 2$.