SULTAN QABOOS UNIVERSITY – COLLEGE OF SCIENCE DEPARTMENT OF MATHEMATICS AND STATISTICS SUMMER 2010 – INTERM TEST

MATH 3171 – LINEAR ALGEBRA AND MULTIVARIATE CALCULUS FOR ENGINEERS

TIME ALLOWED: 70 MINUTES

INSTRUCTIONS

- ✤ SHOW ALL WORK FOR FULL CREDIT.
- ***** THE TEST CONSISTS OF 4 QUESTIONS, EACH ON A SEPARATE SHEET.
- ✤ PROVIDE YOUR ANSWERS ON THE SHEET IN THE SPACE DIRECTLY BELOW EACH QUESTION.
- ✤ PLEASE DO NOT SEPARATE THE PAGES OF THIS BOOKLET

WRITE YOUR ID AT THE TOP OF EACH SHEET

QUESTION NO.	MAXIMUM MARKS	MARKS SCORED	
1	15		
2	15		
3	15		
4	15		
TOTAL	60		

- **1.** (a) [10 Marks] Let $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix}$.
 - (i) Show that A satisfies the expression $A^3 2A^2 + A I = 0$.
 - (ii) Show that A is *invertible*. Find the inverse of A *using the above expression*.
 - (b) [5 Marks] Show that any square matrix can be written as the sum of a *symmetric* matrix and a *skew- symmetric* matrix.

2. Consider the non-homogeneous linear system

W	-x	+ <i>y</i>	+2z	= 2
3w	+ <i>x</i>	+4 <i>y</i>	-z	=4
11w	+x	+14 <i>y</i>	+z	$=\lambda$.

- (a) [4 Marks] Reduce the *augmented* matrix to the echelon form.
- (b) [7 Marks] Determine the value(s) of λ for which this system has
 (i) no solution,
 (ii) at least one solution. For case (ii) write the *general solution* in matrix form.
- (c) [2 Mark] Using part (a) find the rank of the *augmented* matrix.
- (d) [2 Mark] Using part (a) determine whether the row vectors $\begin{bmatrix} 1 & -1 & 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 3 & 1 & 4 & -1 \end{bmatrix}$ and $\begin{bmatrix} 11 & 1 & 14 & 1 \end{bmatrix}$ are linearly *dependent* or *independent*. Justify

your answer.

3. (a) [7 Marks] Solve the following system by Cramer's rule *if it is applicable*

- (b) [4 Marks] If A, B and C are nonsingular square matrices of any order, then *prove* that $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.
- (c) [4 Marks] Prove that the product of any two unitary matrices (of the same size) is unitary.

4. Consider $A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

(a) [7 Marks] Find the *eigenvalues* and the corresponding *eigenvectors* of A.

- (b) [3 Marks] Find *algebraic* multiplicity, *geometric* multiplicity and *defect* of the corresponding eigenvalues of the matrix A .
- (c) [5 Marks] With proper explanation determine whether A is diagonalizable nor not. If possible diagonalize the matrix A.