Student ID:

1. Let $u=\left[\begin{array}{lll}a & b & c\end{array}\right], v=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $A=\left[\begin{array}{rrr}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$. Compute: $A^{T} u^{T}$ and $u^{T} v v^{T}$.
2. Solve the following linear system by Gauss elimination: $\left\{\begin{array}{r}x_{1}-x_{2}+2 x_{3}-x_{4}=0 \\ -3 x_{1}+3 x_{2}-6 x_{3}+5 x_{4}=12 \\ 2 x_{1}-2 x_{2}+4 x_{3}-2 x_{4}=0\end{array}\right.$.
3. Determine whether the vectors $\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ -4\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ -2\end{array}\right]$ are linearly dependent or independent.

Student ID:

1. Let $u=\left[\begin{array}{ll}a & b\end{array}\right], v=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $A=\left[\begin{array}{rr}0 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$. Compute: $A^{T} v^{T}$ and $u^{T} v v^{T}$.
2. Solve the following linear system by Gauss elimination: $\left\{\begin{array}{r}x_{1}-x_{2}+2 x_{3}-x_{4}=0 \\ 2 x_{1}-2 x_{2}+4 x_{3}-2 x_{4}=0 \\ -3 x_{1}+3 x_{2}-6 x_{3}+6 x_{4}=12\end{array}\right.$
3. Determine whether the vectors $\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right],\left[\begin{array}{r}-2 \\ 0 \\ -4\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ -2\end{array}\right]$ are linearly dependent or independent.

Student ID:

1. Let $u=\left[\begin{array}{lll}a & b & c\end{array}\right], v=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $A=\left[\begin{array}{rrr}0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$. Compute: $A^{T} v^{T}$ and $v^{T} u u^{T}$.
2. Solve the following linear system by Gauss elimination: $\left\{\begin{array}{r}x_{1}-x_{2}+2 x_{3}-3 x_{4}=0 \\ -3 x_{1}+3 x_{2}-6 x_{3}+5 x_{4}=8 \\ 2 x_{1}-2 x_{2}+4 x_{3}-6 x_{4}=0\end{array}\right.$.
3. Determine whether the vectors $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 3\end{array}\right]$ are linearly dependent or independent.
4. Let $u=\left[\begin{array}{ll}a & b\end{array}\right], v=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and $A=\left[\begin{array}{rr}0 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$. Compute: $u A^{T}$ and $u A^{T} v^{T}$.
5. Solve the following linear system by Gauss elimination: $\left\{\begin{array}{r}-x_{1}+x_{2}-2 x_{3}+3 x_{4}=0 \\ -3 x_{1}+3 x_{2}-6 x_{3}+2 x_{4}=21 \\ 2 x_{1}-2 x_{2}+4 x_{3}-6 x_{4}=0\end{array}\right.$.
6. Determine whether the vectors $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 3\end{array}\right]$ are linearly dependent or independent.
