Sultan Qaboos University Department of Mathematics and Statistics MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS FOR ENGINEERS Fall 2008 - Quiz2A - Solutions SHOW ALL YOUR WORK

1. **5 marks** Find the spectrum and eigenvectors of the matrix

$$A = \left(\begin{array}{ccc} 0 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Solution: The eigenvalues are the roots of the characteristic equation $det(A - \lambda I) = 0$:

$$\begin{vmatrix} -\lambda & 3 & 0 \\ 0 & -\lambda & 0 \\ 0 & 0 & -1 - \lambda \end{vmatrix} = 0, \quad \boxed{\mathbf{1} \text{ mark}}$$

or

$$(-\lambda)(-\lambda)(-1-\lambda) = 0.$$

Thus,

$$\lambda = 0$$
 (multiplicity 2), $\lambda = -1$. **1 mark**

Hence the spectrum of matrix A is the set $\{-1,0\}$. **1 mark**.

To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A - \lambda I) \mathbf{x} = \mathbf{0}$ for the different eigenvalues:

(a) For
$$\lambda = 0$$

$$\begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

One finds

 $x_2 = x_3 = 0$, x_1 takes arbitrary real values.

Hence one may take an eigenvector of the form (1,0,0). **1 mark**

(b) For
$$\lambda = -1$$

$$\begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

One finds

 $x_1 = x_2 = 0$, x_3 takes arbitrary real values.

Hence one may take an eigenvector of the form (0,0,1). **1 mark**

2. **5 marks** Is the matrix $\begin{pmatrix} \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix}$ orthogonal? **Explain** your answer.

Solution: Let

$$A = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix}.$$

Then

$$A^T = \left(egin{array}{ccc} rac{1}{2} & 0 & rac{\sqrt{3}}{2} \ 0 & 1 & 0 \ -rac{\sqrt{3}}{2} & 0 & rac{1}{2} \ \end{array}
ight).$$
 I mark

Multiply to get

$$\begin{array}{lll} AA^T & = & \left(\begin{array}{ccc} \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{array} \right) \left(\begin{array}{ccc} \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ -\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{array} \right) \\ & = & \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right). \quad \textbf{2-marks} \end{array}$$

This proves that $A^T = A^{-1}$. **1 mark** Hence the given matrix is orthogonal.

Note: You may also want to check the two equalities $AA^T = I$ and $A^TA = I$.

Sultan Qaboos University Department of Mathematics and Statistics MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS FOR ENGINEERS Fall 2008 - Quiz2B - Solutions SHOW ALL YOUR WORK

1. 6 marks Find the spectrum and eigenvectors of the matrix

$$A = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Solution: The eigenvalues are the roots of the characteristic equation $\det(A - \lambda I) = 0$:

$$\left| \begin{array}{ccc} 2-\lambda & 1 & 0 \\ 0 & 1-\lambda & 0 \\ 0 & 0 & -\lambda \end{array} \right| = 0 \quad \boxed{\textbf{L} \, \mathbf{mark}}$$

or

$$(2 - \lambda)(1 - \lambda)(-\lambda) = 0.$$

Thus

$$\lambda = 0$$
, $\lambda = 1$, $\lambda = 2$ **1 mark**.

Hence the spectrum of matrix A is the set $\{0,1,2\}$. **1 mark**

To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A - \lambda I) \mathbf{x} = \mathbf{0}$ for the different eigenvalues:

(a) For $\lambda = 0$

$$\left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right).$$

One finds

 $x_1 = x_2 = 0$, x_3 takes arbitrary values.

Hence one may take an eigenvector of the form (0,0,1).

(b) For $\lambda = 1$

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

One finds

$$x_1 + x_2 = x_3 = 0.$$

Hence one may take an eigenvector of the form (1, -1, 0). **1 mark** (a) For $\lambda = 2$

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right).$$

One finds

 $x_2 = x_3 = 0$, x_1 takes arbitrary values.

Hence one may take an eigenvector of the form (1,0,0).

2. **4 marks** Is the matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$ orthogonal? **Explain** your answer.

Solution: Let

$$A = \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2}\\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{array}\right).$$

Then

$$A^T = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & rac{\sqrt{3}}{2} & rac{1}{2} \ 0 & rac{1}{2} & rac{\sqrt{3}}{2} \end{array}
ight).$$
 I mark

Multiply to get

This proves that $A^T \neq A^{-1}$. Lamber Hence the given matrix is not orthogonal. Lamber

Sultan Qaboos University Department of Mathematics and Statistics MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS FOR ENGINEERS Fall 2008 - Quiz2C - Solutions SHOW ALL YOUR WORK

1. 6 marks Find the spectrum and eigenvectors of the matrix

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & -4 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

Solution: The eigenvalues are the roots of the characteristic equation $det(A - \lambda I) = 0$:

$$\begin{vmatrix} 2-\lambda & 0 & 0 \\ 0 & -4-\lambda & 0 \\ 1 & 0 & 1-\lambda \end{vmatrix} = 0 \quad \boxed{\mathbf{1} \text{ mark}}$$

or

$$(2 - \lambda)(-4 - \lambda)(1 - \lambda) = 0.$$

Thus

$$\lambda = 2$$
, $\lambda = -4$, $\lambda = 1$. **1 mark**

Hence the spectrum of matrix A is the set $\{-4, 1, 2\}$. **1 mark**

To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A - \lambda I) \mathbf{x} = \mathbf{0}$ for the different eigenvalues:

(a) For
$$\lambda = 2$$

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -6 & 0 \\ 1 & 0 & -1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right).$$

One finds

$$x_2 = 0, \quad x_1 = x_3.$$

Hence one may take an eigenvector of the form (1,0,1). **1 mark**

(b) For
$$\lambda = -4$$

$$\begin{pmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

One finds

 $x_1 = x_3 = 0$, x_2 takes arbitrary real values.

Hence one may take an eigenvector of the form (0,1,0). **1 mark** (c) For $\lambda = 1$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

One finds

 $x_1 = x_2 = 0$, x_3 takes arbitrary real values.

Hence one may take an eigenvector of the form (0,0,1).

2. 4 marks Is the matrix $\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$ orthogonal? Explain your answer.

Solution: Let

$$A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Then

$$A^T = \left(egin{array}{ccc} rac{1}{2} & rac{\sqrt{3}}{2} & 0 \ rac{\sqrt{3}}{2} & rac{1}{2} & 0 \ 0 & 0 & 1 \end{array}
ight).$$
 Therefore

Multiply to get

This proves that $A^T \neq A^{-1}$. **1 mark** Hence the given matrix is not orthogonal. **1 mark**

Sultan Qaboos University Department of Mathematics and Statistics MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS FOR ENGINEERS Fall 2008 - Quiz2D - Solutions SHOW ALL YOUR WORK

1. **5 marks** Find the spectrum and eigenvectors of the matrix

$$A = \left(\begin{array}{ccc} 0 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Solution: The eigenvalues are the roots of the characteristic equation $det(A - \lambda I) = 0$:

$$\begin{vmatrix} -\lambda & 3 & 0 \\ 0 & -\lambda & 0 \\ 0 & 0 & -1 - \lambda \end{vmatrix} = 0 \quad \boxed{\mathbf{L} \mathbf{mark}}$$

or

$$(-\lambda)(-\lambda)(-1-\lambda) = 0.$$

Thus

$$\lambda = 0$$
 (multiplicity 2), $\lambda = -1$. **1 mark**

Hence the spectrum of matrix A is the set $\{-1,0\}$. **1 mark**

To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A - \lambda I) \mathbf{x} = \mathbf{0}$ for the different eigenvalues:

(a) For
$$\lambda = -1$$

$$\left(\begin{array}{ccc} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right).$$

One finds

 $x_1 = x_2 = 0$, x_3 takes arbitrary real values.

Hence one may take an eigenvector of the form (0,0,1).

(b) For
$$\lambda = 0$$

$$\begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

One finds

 $x_2 = x_3 = 0$, x_1 takes arbitrary real values.

Hence one may take an eigenvector of the form (1,0,0). **I mark**

2. **5 marks** Is the matrix $\begin{pmatrix} 1 & i & 1 \\ 0 & 1 & 0 \\ -i & 0 & 2 \end{pmatrix}$ unitary? **Explain** your answer.

Solution: Let

$$A = \left(\begin{array}{ccc} 1 & i & 1 \\ 0 & 1 & 0 \\ -i & 0 & 2 \end{array} \right).$$

Then

$$\overline{A}^T = \left(egin{array}{ccc} 1 & 0 & i \ -i & 1 & 0 \ 1 & 0 & 2 \end{array}
ight). \quad extbf{1_mark}$$

Multiply to get

$$A\overline{A}^T = \begin{pmatrix} 1 & i & 1 \\ 0 & 1 & 0 \\ -i & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 & i \\ -i & 1 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & i & 2+i \\ -i & 1 & 0 \\ 2-i & 0 & 5 \end{pmatrix}. \quad \mathbf{2 \text{ marks}}$$

This proves that $A^T \neq A^{-1}$. **1 mark** Hence the given matrix is not unitary. **1 mark**

Sultan Qaboos University Department of Mathematics and Statistics MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS FOR ENGINEERS Fall 2008 - Quiz2E - Solutions SHOW ALL YOUR WORK

1. **5 marks** Find the spectrum and eigenvectors of the matrix

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

Solution: The eigenvalues are the roots of the characteristic equation $det(A - \lambda I) = 0$:

$$\begin{vmatrix} 1-\lambda & 1 & 0 \\ 1 & 1-\lambda & 1 \\ 0 & 0 & -\lambda \end{vmatrix} = 0 \quad \boxed{\mathbf{L} \mathbf{mark}}$$

or

$$(1 - \lambda)(1 - \lambda)(-\lambda) - (-\lambda) = 0.$$

Thus

$$\lambda = 0$$
 (multiplicity 2), $\lambda = 2$. **1 mark**

Hence the spectrum of matrix A is the set $\{0, 2\}$. **I mark**

To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A - \lambda I) \mathbf{x} = \mathbf{0}$ for the different eigenvalues:

(a) For $\lambda = 0$

$$\left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right).$$

One finds

$$x_1 + x_2 = x_3 = 0.$$

Hence one may take an eigenvector of the form (1, -1, 0).

(b) For $\lambda = 2$

$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

One finds

$$x_1 - x_2 = x_3 = 0.$$

Hence one may take an eigenvector of the form (1,1,0). **I mark**

2. **5 marks** Is the matrix $\begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & 0 \\ -i & 0 & i \end{pmatrix}$ unitary? **Explain** your answer.

Solution: Let

$$A = \left(\begin{array}{ccc} 1 & 0 & -i \\ 0 & 1 & 0 \\ -i & 0 & i \end{array} \right).$$

Then

$$\overline{A}^T = \left(egin{array}{ccc} 1 & 0 & i \ 0 & 1 & 0 \ i & 0 & -i \end{array}
ight). \quad extbf{1_mark}$$

Multiply to get

$$egin{array}{lll} A\overline{A}^T & = & \left(egin{array}{ccc} 1 & 0 & -i \\ 0 & 1 & 0 \\ -i & 0 & i \end{array}
ight) \left(egin{array}{ccc} 1 & 0 & i \\ 0 & 1 & 0 \\ i & 0 & -i \end{array}
ight) \\ & = & \left(egin{array}{ccc} 2 & 0 & -1+i \\ 0 & 1 & 0 \\ -1-i & 0 & 2 \end{array}
ight). \end{array}$$

This proves that $\overline{A}^T \neq A^{-1}$. **The mark** Hence the given matrix is not unitary.