Sultan Qaboos University
 Department of Mathematics and Statistics
 MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE
 CALCULUS FOR ENGINEERS
 Fall 2008-Quiz2A - Solutions
 SHOW ALL YOUR WORK

1. 5 marks Find the spectrum and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
0 & 3 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Solution: The eigenvalues are the roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$:

$$
\left|\begin{array}{ccc}
-\lambda & 3 & 0 \\
0 & -\lambda & 0 \\
0 & 0 & -1-\lambda
\end{array}\right|=0, \quad 1 \text { mark }
$$

or

$$
(-\lambda)(-\lambda)(-1-\lambda)=0 .
$$

Thus,

$$
\lambda=0 \quad(\text { multiplicity } 2), \quad \lambda=-1 . \quad 1 \text { mark }
$$

Hence the spectrum of matrix A is the set $\{-1,0\}$. 1 mark.
To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A-\lambda I) \mathbf{x}=\mathbf{0}$ for the different eigenvalues:
(a) For $\lambda=0$

$$
\left(\begin{array}{ccc}
0 & 3 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

One finds

$$
x_{2}=x_{3}=0, \quad x_{1} \text { takes arbitrary real values. }
$$

Hence one may take an eigenvector of the form $(1,0,0)$. $\mathbf{1} \mathbf{m a r k}$
(b) For $\lambda=-1$

$$
\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

One finds

$$
x_{1}=x_{2}=0, \quad x_{3} \text { takes arbitrary real values. }
$$

Hence one may take an eigenvector of the form $(0,0,1)$. 1 mark
2. 5 marks Is the matrix $\left(\begin{array}{ccc}\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & \frac{1}{2}\end{array}\right)$ orthogonal? Explain your answer.

Solution: Let

$$
A=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\
0 & 1 & 0 \\
\frac{\sqrt{3}}{2} & 0 & \frac{1}{2}
\end{array}\right)
$$

Then

$$
A^{T}=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\
0 & 1 & 0 \\
-\frac{\sqrt{3}}{2} & 0 & \frac{1}{2}
\end{array}\right) . \quad 1 \text { mark }
$$

Multiply to get

$$
\begin{aligned}
A A^{T} & =\left(\begin{array}{ccc}
\frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\
0 & 1 & 0 \\
\frac{\sqrt{3}}{2} & 0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\
0 & 1 & 0 \\
-\frac{\sqrt{3}}{2} & 0 & \frac{1}{2}
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) . \quad \text { 2 marks }
\end{aligned}
$$

This proves that $A^{T}=A^{-1}$. 1 mark Hence the given matrix is orthogonal. 1 mark

Note: You may also want to check the two equalities $A A^{T}=I$ and $A^{T} A=$ I.

Sultan Qaboos University Department of Mathematics and Statistics MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS FOR ENGINEERS
 Fall 2008-Quiz2B - Solutions
 SHOW ALL YOUR WORK

1. 6 marks Find the spectrum and eigenvectors of the matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Solution: The eigenvalues are the roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$:

$$
\left|\begin{array}{ccc}
2-\lambda & 1 & 0 \\
0 & 1-\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right|=0 \quad \text { 1 mark }
$$

or

$$
(2-\lambda)(1-\lambda)(-\lambda)=0
$$

Thus

$$
\lambda=0, \quad \lambda=1, \quad \lambda=2 \quad 1 \text { mark. }
$$

Hence the spectrum of matrix A is the set $\{0,1,2\}$. $\mathbf{1}$ mark
To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A-\lambda I) \mathbf{x}=\mathbf{0}$ for the different eigenvalues:
(a) For $\lambda=0$

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

One finds

$$
x_{1}=x_{2}=0, \quad x_{3} \text { takes arbitrary values. }
$$

Hence one may take an eigenvector of the form $(0,0,1)$. 1 mark
(b) For $\lambda=1$

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

One finds

$$
x_{1}+x_{2}=x_{3}=0 .
$$

Hence one may take an eigenvector of the form $(1,-1,0)$. 1 mark (a) For $\lambda=2$

$$
\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

One finds

$$
x_{2}=x_{3}=0, \quad x_{1} \text { takes arbitrary values. }
$$

Hence one may take an eigenvector of the form $(1,0,0)$. 1 mark
2. 4 marks Is the matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right)$ orthogonal? Explain your answer.

Solution: Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)
$$

Then

$$
A^{T}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right) . \quad 1 \text { mark }
$$

Multiply to get

$$
\begin{aligned}
A A^{T} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \frac{\sqrt{3}}{2} \\
0 & \frac{\sqrt{3}}{2} & 1
\end{array}\right) . \text { 1 mark }
\end{aligned}
$$

This proves that $A^{T} \neq A^{-1}$. 1 mark Hence the given matrix is not orthogonal. 1 mark

Sultan Qaboos University
 Department of Mathematics and Statistics
 MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE
 CALCULUS FOR ENGINEERS
 Fall 2008-Quiz2C - Solutions
 SHOW ALL YOUR WORK

1. 6 marks Find the spectrum and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -4 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Solution: The eigenvalues are the roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$:

$$
\left|\begin{array}{ccc}
2-\lambda & 0 & 0 \\
0 & -4-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right|=0 \quad 1 \text { 1-mark }
$$

or

$$
(2-\lambda)(-4-\lambda)(1-\lambda)=0 .
$$

Thus

$$
\lambda=2, \quad \lambda=-4, \quad \lambda=1 . \quad 1 \text { mark }
$$

Hence the spectrum of matrix A is the set $\{-4,1,2\}$. $\mathbf{1}$ mark
To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A-\lambda I) \mathbf{x}=\mathbf{0}$ for the different eigenvalues:
(a) For $\lambda=2$

$$
\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -6 & 0 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

One finds

$$
x_{2}=0, \quad x_{1}=x_{3} .
$$

Hence one may take an eigenvector of the form $(1,0,1)$. 1 mark
(b) For $\lambda=-4$

$$
\left(\begin{array}{lll}
6 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

One finds

$$
x_{1}=x_{3}=0, \quad x_{2} \text { takes arbitrary real values. }
$$

Hence one may take an eigenvector of the form $(0,1,0)$. 1 mark
(c) For $\lambda=1$

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -5 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

One finds

$$
x_{1}=x_{2}=0, \quad x_{3} \text { takes arbitrary real values. }
$$

Hence one may take an eigenvector of the form $(0,0,1)$. $\mathbf{1}$ mark
2. 4 marks Is the matrix $\left(\begin{array}{ccc}\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$ orthogonal? Explain your answer.

Solution: Let

$$
A=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then

$$
A^{T}=\left(\begin{array}{ccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) . \quad \text { 1 mark }
$$

Multiply to get

$$
\begin{aligned}
A A^{T} & =\left(\begin{array}{ccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .1 \text { mark }
\end{aligned}
$$

This proves that $A^{T} \neq A^{-1}$. 1 mark Hence the given matrix is not orthogonal. 1 mark

Sultan Qaboos University
 Department of Mathematics and Statistics
 MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE
 CALCULUS FOR ENGINEERS
 Fall 2008-Quiz2D - Solutions
 SHOW ALL YOUR WORK

1. 5 marks Find the spectrum and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
0 & 3 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Solution: The eigenvalues are the roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$:

$$
\left|\begin{array}{ccc}
-\lambda & 3 & 0 \\
0 & -\lambda & 0 \\
0 & 0 & -1-\lambda
\end{array}\right|=0 \quad 1 \text { mark }
$$

or

$$
(-\lambda)(-\lambda)(-1-\lambda)=0
$$

Thus

$$
\lambda=0 \quad(\text { multiplicity } 2), \quad \lambda=-1 . \quad 1 \text { mark }
$$

Hence the spectrum of matrix A is the set $\{-1,0\}$. 1 mark
To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A-\lambda I) \mathbf{x}=\mathbf{0}$ for the different eigenvalues:
(a) For $\lambda=-1$

$$
\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

One finds

$$
x_{1}=x_{2}=0, \quad x_{3} \text { takes arbitrary real values. }
$$

Hence one may take an eigenvector of the form $(0,0,1)$. 1 mark
(b) For $\lambda=0$

$$
\left(\begin{array}{ccc}
0 & 3 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

One finds

$$
x_{2}=x_{3}=0, \quad x_{1} \text { takes arbitrary real values. }
$$

Hence one may take an eigenvector of the form $(1,0,0)$. 1 mark
2. 5 marks Is the matrix $\left(\begin{array}{ccc}1 & i & 1 \\ 0 & 1 & 0 \\ -i & 0 & 2\end{array}\right)$ unitary? Explain your answer.

Solution: Let

$$
A=\left(\begin{array}{ccc}
1 & i & 1 \\
0 & 1 & 0 \\
-i & 0 & 2
\end{array}\right)
$$

Then

$$
\bar{A}^{T}=\left(\begin{array}{ccc}
1 & 0 & i \\
-i & 1 & 0 \\
1 & 0 & 2
\end{array}\right) . \quad 1 \text { mark }
$$

Multiply to get

$$
\begin{aligned}
A \bar{A}^{T} & =\left(\begin{array}{ccc}
1 & i & 1 \\
0 & 1 & 0 \\
-i & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & i \\
-i & 1 & 0 \\
1 & 0 & 2
\end{array}\right) \\
& =\left(\begin{array}{ccc}
3 & i & 2+i \\
-i & 1 & 0 \\
2-i & 0 & 5
\end{array}\right) .
\end{aligned}
$$

This proves that $A^{T} \neq A^{-1}$. 1 mark Hence the given matrix is not unitary. 1 mark

Sultan Qaboos University
 Department of Mathematics and Statistics
 MATH3171-LINEAR ALGEBRA AND MULTIVARIABLE
 CALCULUS FOR ENGINEERS
 Fall 2008-Quiz2E - Solutions
 SHOW ALL YOUR WORK

1. 5 marks Find the spectrum and eigenvectors of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Solution: The eigenvalues are the roots of the characteristic equation $\operatorname{det}(A-\lambda I)=0$:

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 0 \\
1 & 1-\lambda & 1 \\
0 & 0 & -\lambda
\end{array}\right|=0 \quad 1 \quad 1 \text { mark }
$$

or

$$
(1-\lambda)(1-\lambda)(-\lambda)-(-\lambda)=0 .
$$

Thus

$$
\lambda=0 \quad(\text { multiplicity } 2), \quad \lambda=2 . \quad 1 \text { mark }
$$

Hence the spectrum of matrix A is the set $\{0,2\}$. $\mathbf{1}$ mark
To find the eigenvectors, solve the system of linear, homogeneous algebraic equations $(A-\lambda I) \mathbf{x}=\mathbf{0}$ for the different eigenvalues:
(a) For $\lambda=0$

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

One finds

$$
x_{1}+x_{2}=x_{3}=0 .
$$

Hence one may take an eigenvector of the form $(1,-1,0)$. $\mathbf{1}$ mark
(b) For $\lambda=2$

$$
\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

One finds

$$
x_{1}-x_{2}=x_{3}=0 .
$$

Hence one may take an eigenvector of the form $(1,1,0)$. $\mathbf{1}$ mark
2. 5 marks Is the matrix $\left(\begin{array}{ccc}1 & 0 & -i \\ 0 & 1 & 0 \\ -i & 0 & i\end{array}\right)$ unitary? Explain your answer.

Solution: Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & -i \\
0 & 1 & 0 \\
-i & 0 & i
\end{array}\right) .
$$

Then

$$
\bar{A}^{T}=\left(\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & 0 \\
i & 0 & -i
\end{array}\right) . \quad 1 \text { mark }
$$

Multiply to get

$$
\begin{aligned}
A \bar{A}^{T} & =\left(\begin{array}{ccc}
1 & 0 & -i \\
0 & 1 & 0 \\
-i & 0 & i
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & i \\
0 & 1 & 0 \\
i & 0 & -i
\end{array}\right) \\
& =\left(\begin{array}{ccc}
2 & 0 & -1+i \\
0 & 1 & 0 \\
-1-i & 0 & 2
\end{array}\right) . \text { 2 marks }
\end{aligned}
$$

This proves that $\bar{A}^{T} \neq A^{-1}$. 1 mark Hence the given matrix is not unitary. 1 mark

