Name:	ID:	Section:
-------	-----	----------

Sultan Qaboos University College of Science Department of Computer Science

Department of Computer Science

COMP2101: Introduction to Computer Science - Spring 2009

Midterm Exam Sunday, March 22nd 2009 Duration: 75 minutes

Note the following:

- Exam consists of <u>two</u> different parts (pages + first page)
- PART I consists of questions that address the theory part of the course.
- PART II consists of questions that address the programming part of the course.
- Write down your name, ID and section number in each page of the exam sheets.
- Calculators are not allowed

Grading Table

Part	Total Mark	Your Mark
PART I	20	
PART II	20	
Grand total	40	

Name:	ID:	Section:
-------	-----	----------

PART II (Programming):

Question	Full Mark	Your Mark
Q1	6	
Q2	10	
Q3	4	
TOTAL	20	

Q1: (6 points) Expressions and rules of precedence

1. Translate the following mathematical formula into a C++ expression

Make necessary declarations

(3 points)

Formula	C++ expression (x, y, z, α and β are real numbers)
	// Declarations (1point)
$x\cos(\alpha) - y\sin(\beta)$	float x,y,z,alpha, beta;
$z = \sqrt{\frac{ x^y + y^x }{ x^y + y^x }}$	//Statement (2 points)
	Z=sqrt((x*cos(alpha)-y*sin(beta))/abs(pow(x,y)+pow(y,x))
$z = \sqrt{\frac{x\cos(\alpha) - y\sin(\beta)}{ x^y + y^x }}$	// Statement (2 points)

2. Assume the following declarations (3 points)

a. Evaluate the C++ expressions below (1 point)

		Expression								
Υ	=	X	-	С	/	В	+	3.5	6.5	

b. Indicate the order in which the operations in the following C++ expressions are executed (2 points)

Y = sqrt (A % (B - 1) / (B + 1))

3 2

Name:	ID:	Section:
-------	-----	----------

Q2: (10 points) finding and correcting errors:

1. Circle at least five (5) errors in the following C++ program. **(5 points)**Errors that occur in the same line are counted as one error.

Please note that Sterling formula is defined as follows: $n! = e^{-n} n^n \sqrt{2\pi n}$ And there is a C++ function in cmath library exp (n)= e^{-n}

```
1.
       #include <iostream>
       #include <cmath>
2.
3.
      using namespace std
4.
       / This function calculates factorial of n using Sterling formula
5.
6.
       int main{
        double Sterling, PI=3.14159;
7.
        int n;
8.
9.
        cout << "Please, enter n: ";</pre>
10.
11.
        cin << n;
        Sterling= exp(n)* -n pow(n)*sqrt(2*PI*n);
12.
13.
        cout<< "value of n! is:"<<setw(10)<<Sterling << endl;</pre>
        return 0;
14.
       }
15.
```

2. For each of the errors you circled above, rewrite the <u>whole corrected</u> statement in the table provided below according to the line number where it should be included **(5 points)**

Error #	line #	Write the whole correct Statement					
1.	4	Using namespace std;					
2.	5	// This function calculates factorial of n using Sterling formula					
3.	6	int main()					
4.	11	cin>>n;					
5.	12	sterling= exp(n)* pow(double(n),-n)*sqrt(2*PI*n);					
6.	3	<pre>#include <iomanip></iomanip></pre>					

Name:	ID:	Section:	

Q3: (4 points) Write in the table provided below, the exact output of the following program. *Note:* Each cell of the table represents one character location.

```
#include <iomanip>
#include <iostream>
#include <string>
using namespace std;
int main()
 string item1="hard disk", item2="mouse";
 int num1= 10, num2=20;
 float totalPrice1=157,totalPrice2=15.557;
 cout<<fixed<<showpoint<<setprecision(1);</pre>
 cout<<num1<<"units of"<<item1<<"were sold\n";</pre>
 cout<<setw(12)<<"Total price="<<setw(6)<<totalPrice1<<endl;</pre>
 cout<<setprecision(2);</pre>
 cout < setw(4) < num2 < setw(9) < "units of" < setw(6) < item2 < " were sold \n";
 cout<<setw(12)<<"Total price="<<setw(8)<<totalPrice2<<endl;</pre>
 cout << endl;
 return 0;
```

1	0	u	n	i	t	S		0	f	h	а	r	d		d	i	S	k	W	е	r	е		S	0	1	d				
Т	0	t	а			р	r	i	С	е	=		1	5	7		0														
		2	0		u	n	i	t	S		0	f		m	0	u	S	e		W	е	r	e		S	0	1	d			
Т	0	t	а			р	r	i	C	е	=				1	5	•	5	6												